Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 183–203 (Mi znsl7395)  

This article is cited in 1 scientific paper (total in 1 paper)

B. Ya. Levin function for some sets of segments

O. V. Silvanovicha, N. A. Shirokovb

a Saint-Petersburg State Mining Institute
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (474 kB) Citations (1)
References:
Abstract: Let $\{I_k\}_{k\in\mathbb{Z}}$, $I_k=[a_k,b_k]$, $b_k<a_{k+1}$, $a_k\rightarrow {-\infty}$ $(k\rightarrow{-\infty})$, $a_k\rightarrow {+\infty}$ $(k\rightarrow{+\infty})$ be a set of disjoint segments of the real axis $\mathbb{R}$. $J_k=[b_k,a_{k+1}]$, $E=\bigcup\limits_{k\in\mathbb{Z}}J_k.$ We assume that $a_0=-1$, $ b_0=1$, $a_1=2^{n_0}\stackrel{\mathrm{def}}{=}C$, $b_{-1}=-2^{n_0}$, $ |I_k|=2^{-m\alpha}$, $\alpha>0$ in case $I_k\subset [2^m,2^{m+1}]$ or $I_k\subset [-2^{m+1},-2^{m}]$, $m\geq n_0.$ We assume further that there exist $k$ and $l$ such that $a_k=2^n$ and $b_l=-2^n$, for any $n\geq n_0$. The B. Ya. Levin function $f_{E,\sigma}(z)$, $\sigma>0$, is defined to be a function satisfying the following conditions:
  • $f_{E,\sigma}(z)$ is subharmonic on the complex plane $\mathbb{C}$ and harmonic on $\mathbb{C}\setminus E$;
  • $f_{E,\sigma}(z)=0$, $x\in E;\ f_{E,\sigma}(z)>0,\ z\in\mathbb{C}\setminus E$;
  • $\underset{z\rightarrow\infty}{\varlimsup}\dfrac{f_{E,\sigma}(z)}{|z|}=\sigma,\ f_{E,\sigma}(\overline z)=f_{E,\sigma}(z)$;
  • if $g$ is subharmonic on $\mathbb{C}$, $g(x)\leq 0,\ x\in E,$ and $\underset{z\rightarrow\infty}{\varlimsup}\dfrac{g(z)}{|z|}\leq\sigma$, then
    $$ g(z)\leq f_{E,\sigma}(z),\ z\in \mathbb{C}. $$
The B. Ya. Levin function $f_{E,\sigma}(z)$ exists if $C_1|I_l|\geq|J_k|\geq C|I_l|$, $J_k$, $I_l\subset[2^n,2^{n+1}]$ or $J_k$, $I_l\subset[-2^{n+1},-2^{n}]$, $n\geq n_0.$ We prove that if $C\geq c_0(\alpha)$, then $\max\limits_{x\in I_k}f_{E,\sigma}(x)\leq 6\sigma|I_k| $ and describe the behavior of $f_{E,1}(z)$ in a neighborhood of $J_k$, $k\in\mathbb{Z}$.
Key words and phrases: subharmonic functions, majorants, B. Ya. Levin function.
Funding agency Grant number
Russian Science Foundation 23-11-00171
Received: 23.09.2023
English version:
Journal of Mathematical Sciences (New York), 2024, Volume 284, Issue 6, Pages 853–867
DOI: https://doi.org/10.1007/s10958-024-07393-6
Document Type: Article
UDC: 517.574
Language: Russian
Citation: O. V. Silvanovich, N. A. Shirokov, “B. Ya. Levin function for some sets of segments”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 183–203; J. Math. Sci. (N. Y.), 284:6 (2024), 853–867
Citation in format AMSBIB
\Bibitem{SilShi23}
\by O.~V.~Silvanovich, N.~A.~Shirokov
\paper B.~Ya.~Levin function for some sets of segments
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 183--203
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7395}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2024
\vol 284
\issue 6
\pages 853--867
\crossref{https://doi.org/10.1007/s10958-024-07393-6}
Linking options:
  • https://www.mathnet.ru/eng/znsl7395
  • https://www.mathnet.ru/eng/znsl/v527/p183
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025