Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 532, Pages 169–211 (Mi znsl7458)  

Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach

A. V. Kitaeva, A. Vartanianb

a Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
b Department of Mathematics, College of Charleston, Charleston, SC 29424, USA
References:
Abstract: This paper contains several technical refinements of our previously obtained results on the monodromy parametrisation of small-$\tau$ asymptotics of solutions $u(\tau)$ of the degenerate third Painlevé equation,
$$ u^{\prime \prime}(\tau) = \frac{(u^{\prime}(\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau} \left(-8 \varepsilon (u(\tau))^{2} + 2ab \right) + \frac{b^{2}}{u(\tau)}, $$
where $\varepsilon = \pm 1$, $\varepsilon b > 0$, $a \in \mathbb{C},$ and of its associated mole function, $\varphi(\tau)$, which satisfies $\varphi^{\prime}(\tau) = \tfrac{2a}{\tau} + \tfrac{b}{u(\tau)}$. We also describe three families of three-real-parameter solutions $u(\tau)$ which have infinite sequences of zeros converging to the origin of the complex $\tau$-plane. Furthemore, for $a=0$, a numerical visualisation of the formulae connecting the asymptotics as $\tau\to0$ and $\tau\to+\infty$ of solutions $u(\tau)$ and $\varphi(\tau)$ having logarithmic behaviour as $\tau\to0$ is given.
Key words and phrases: Painlevé equation, monodromy data, asymptotics.
Received: 05.08.2024
Document Type: Article
UDC: 517
Language: English
Citation: A. V. Kitaev, A. Vartanian, “Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach”, Questions of quantum field theory and statistical physics. Part 30, Zap. Nauchn. Sem. POMI, 532, POMI, St. Petersburg, 2024, 169–211
Citation in format AMSBIB
\Bibitem{KitVar24}
\by A.~V.~Kitaev, A.~Vartanian
\paper Asymptotics of solutions of the degenerate third Painlev\'e equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
\inbook Questions of quantum field theory and statistical physics. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 532
\pages 169--211
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7458}
Linking options:
  • https://www.mathnet.ru/eng/znsl7458
  • https://www.mathnet.ru/eng/znsl/v532/p169
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :48
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025