Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 535, Pages 24–31 (Mi znsl7483)  

On a generalization of the Bernoulli scheme

S. M. Ananjevskii, V. B. Nevzorov

Saint Petersburg State University
References:
Abstract: The paper considers a generalization of Bernoulli's scheme. We consider a sequence of independent identically distributed random variables (r.v.) $X_1, X_2,\ldots,$ taking values $-1, 0, 1$ with probabilities
$$ \mathbf{P} \{X_n=-1\}=p_1, \mathbf{P} \{X_n=0\}=p_2, \mathbf{P} \{X_n=1\}=p_3, $$
where
$$ 0<p_1<1, 0<p_2<1, 0<p_3<1 \text{ and } p_1+p_2+p_3=1. $$
If we are only interested in the number of $-1$ values in a set of $n$ r.v. $X_1, X_2,\ldots,X_n$, then the formulas used for Bernoulli schemes with success probabilities $p_1$ can be applied to such events. Similarly, occurrences of values $+1$ can be treated as occurrences of successes in a Bernoulli scheme with probability of success $p_3$. If you are interested in the appearance of only zero values of $X$, then their number in $n$ trials has a binomial $B(n, p_2)$ distribution, and the mathematical expectation of the number of such appearances is equal to $np_2$.
But in a scheme with three possible variants of values of random variables, a number of new problems appear, in comparison with the Bernoulli scheme. The paper examines some of them, limiting ourselves to situations associated with the appearance of zero values of random variables in a given scheme. Similar results for values $-$1 or $+1$ can be obtained simply by replacing the probability of $p_2$ with $p_1$ or $p_3$ in the resulting formulas. The article examines the relationship of such three-point distributions with a number of other probability laws. A short review of previously obtained results in this area is given and several new ones are added. The research begun in the previous works of the authors was continued.
Key words and phrases: scheme, binomial distribution, geometric distribution, negative binomial distribution, mathematical expectation, generating functions.
Received: 26.09.2024
Document Type: Article
UDC: 519.2
Language: Russian
Citation: S. M. Ananjevskii, V. B. Nevzorov, “On a generalization of the Bernoulli scheme”, Probability and statistics. Part 36, Zap. Nauchn. Sem. POMI, 535, POMI, St. Petersburg, 2024, 24–31
Citation in format AMSBIB
\Bibitem{AnaNev24}
\by S.~M.~Ananjevskii, V.~B.~Nevzorov
\paper On a generalization of the Bernoulli scheme
\inbook Probability and statistics. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 535
\pages 24--31
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7483}
Linking options:
  • https://www.mathnet.ru/eng/znsl7483
  • https://www.mathnet.ru/eng/znsl/v535/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :37
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025