Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 535, Pages 269–276 (Mi znsl7499)  

On convergence of distributions for sums of independent random vectors with randomly change of components

A. N. Frolov

Saint Petersburg State University
References:
Abstract: We derive new results on convergence of distributions for sums of independent random vectors with randomly changed components in scheme of series. In particular, a multidimensional central limit theorem is proved. If the random change of components is defined by a Poisson process then we arrive at results on convergence of finitely dimension distributions of psi-processes. In Gaussian case, the limit process is the Ornstein–Uhlenbeck process. We discuss a replacement of the Poisson process by processes with non-negative integer increments.
Key words and phrases: random vectors with randomly changed components, multidimensional central limit theorem, Ornstein–Uhlenbeck process.
Funding agency Grant number
Russian Science Foundation 23-21-00078
Received: 10.10.2024
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. N. Frolov, “On convergence of distributions for sums of independent random vectors with randomly change of components”, Probability and statistics. Part 36, Zap. Nauchn. Sem. POMI, 535, POMI, St. Petersburg, 2024, 269–276
Citation in format AMSBIB
\Bibitem{Fro24}
\by A.~N.~Frolov
\paper On convergence of distributions for sums of independent random vectors with randomly change of components
\inbook Probability and statistics. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 535
\pages 269--276
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7499}
Linking options:
  • https://www.mathnet.ru/eng/znsl7499
  • https://www.mathnet.ru/eng/znsl/v535/p269
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :35
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026