Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 540, Pages 46–60 (Mi znsl7543)  

UnGAN: machine unlearning strategies through membership inference

A. Zhavoronkina, M. Pautovbc, N. Kalmykovd, E. Sevriugovd, D. A. Kovalevae, O. Y. Rogovdcf, I. Oseledetsdc

a Moscow Institute of Physics and Technology (National Research University)
b Ivannikov Institute for System Programming of the Russian Academy of Sciences
c Artificial Intelligence Research Institute
d Skolkovo Institute of Science and Technology
e SaluteDevices
f VeinCV LLC
References:
Abstract: As regulatory and ethical demands for data privacy and the right to be forgotten increase, the ability to effectively unlearn specific data points from machine learning models without retraining from scratch becomes paramount. Machine unlearning aims to efficiently eliminate the influence of certain data points on a model. We propose the UnGAN, a novel approach to machine unlearning that leverages Generative Adversarial Networks (GANs) to address the growing need for efficient and reliable data removal from trained models. UnGAN proposes a unique unlearning strategy through membership inference, where a discriminator network is trained to identify whether a given input was part of the model's training set. The discriminator is a three-layer fully connected network employing ReLU activation functions, receiving inputs from the output of the model undergoing unlearning and the class label. This architecture enables the discriminator to learn the membership status of data points with high precision, thereby guiding the unlearning process.
Key words and phrases: Machine unlearning, generative adversarial networks, deep learning, trustworthy AI.
Received: 15.11.2024
Document Type: Article
Language: English
Citation: A. Zhavoronkin, M. Pautov, N. Kalmykov, E. Sevriugov, D. A. Kovalev, O. Y. Rogov, I. Oseledets, “UnGAN: machine unlearning strategies through membership inference”, Investigations on applied mathematics and informatics. Part IV, Zap. Nauchn. Sem. POMI, 540, POMI, St. Petersburg, 2024, 46–60
Citation in format AMSBIB
\Bibitem{ZhaPauKal24}
\by A.~Zhavoronkin, M.~Pautov, N.~Kalmykov, E.~Sevriugov, D.~A.~Kovalev, O.~Y.~Rogov, I.~Oseledets
\paper UnGAN: machine unlearning strategies through membership inference
\inbook Investigations on applied mathematics and informatics. Part~IV
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 540
\pages 46--60
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7543}
Linking options:
  • https://www.mathnet.ru/eng/znsl7543
  • https://www.mathnet.ru/eng/znsl/v540/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :89
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025