Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 540, Pages 148–161 (Mi znsl7548)  

Detecting and eliminating covariate shifts in data for a more robust HDD failure prediction

K. Lukyanovabc, M. Drobyshevskiyac, D. Turdakovac

a Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
c ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia
References:
Abstract: Prediction of HDD failures has garnered significant attention in research, yet the persistence of covariate shifts in data remains a practical challenge. In this work we introduce a novel approach to training covariate shift detection models without the need for additional real data or artificial shift modeling. Moreover, we propose a comprehensive methodology integrating shift detection, administrator alerts, shift elimination, and HDD failure prediction. Experimental results demonstrate the viability of our real-world implementation.
Key words and phrases: HDD failure prediction, detecting and eliminating covariate shift.
Received: 15.11.2024
Document Type: Article
Language: English
Citation: K. Lukyanov, M. Drobyshevskiy, D. Turdakov, “Detecting and eliminating covariate shifts in data for a more robust HDD failure prediction”, Investigations on applied mathematics and informatics. Part IV, Zap. Nauchn. Sem. POMI, 540, POMI, St. Petersburg, 2024, 148–161
Citation in format AMSBIB
\Bibitem{LukDroTur24}
\by K.~Lukyanov, M.~Drobyshevskiy, D.~Turdakov
\paper Detecting and eliminating covariate shifts in data for a more robust HDD failure prediction
\inbook Investigations on applied mathematics and informatics. Part~IV
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 540
\pages 148--161
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7548}
Linking options:
  • https://www.mathnet.ru/eng/znsl7548
  • https://www.mathnet.ru/eng/znsl/v540/p148
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :31
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025