Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2025, Volume 541, Pages 7–15 (Mi znsl7558)  

On stability of triangular factorization of positive operators

M. I. Belishev, A. F. Vakulenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $\mathfrak f=\{\mathscr F_s\}_{s>0}$ be a nest and $C$ a bounded positive operator in a Hilbert space $\mathscr F$. The representation $C=V^*V$ provided $V\mathscr F_s\subset\mathscr F_s$ is a triangular factorization (TF) of $C$ w.r.t. $\mathfrak f$. The factorization is stable if $C^\alpha\underset{\alpha\to\infty}\to C$ and $C^\alpha=V^{\alpha *}V^\alpha$ implies $V^\alpha\to V$. If $C$ is positive definite (isomorphism), then TF is stable. The paper deals with the case of positive but not positive definite $C$. We impose some assumptions on $C^\alpha$ and $C$ which provide the stability of TF.
Key words and phrases: triangular factorization, operator diagonal, amplitude integral, canonical factorization, stability of canonical factorization.
Received: 25.09.2025
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. I. Belishev, A. F. Vakulenko, “On stability of triangular factorization of positive operators”, Mathematical problems in the theory of wave propagation. Part 54, Zap. Nauchn. Sem. POMI, 541, POMI, St. Petersburg, 2025, 7–15
Citation in format AMSBIB
\Bibitem{BelVak25}
\by M.~I.~Belishev, A.~F.~Vakulenko
\paper On stability of triangular factorization of positive operators
\inbook Mathematical problems in the theory of wave propagation. Part~54
\serial Zap. Nauchn. Sem. POMI
\yr 2025
\vol 541
\pages 7--15
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7558}
Linking options:
  • https://www.mathnet.ru/eng/znsl7558
  • https://www.mathnet.ru/eng/znsl/v541/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025