Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2025, Volume 541, Pages 16–29 (Mi znsl7559)  

Abstract dynamical system with boundary control. IV

M. I. Belisheva, S. A. Simonovabc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg
c ITMO University
References:
Abstract: The paper continues the study of the general properties of evolutionary dynamical systems of the type
\begin{align*} & u''(t)+L_0^*u(t) = 0 && \text{ in } {{\mathscr H}}, t\in(0,T), & u(0)=u'(0)=0 && \text{ in } {{\mathscr H}}, &\Gamma_1 u(t) = f(t) && \text{ in } {{\mathscr K}}, t\in[0,T], \end{align*}
where $\mathscr H$ is a Hilbert space, $L_0$ is a positive-definite symmetric operator in $\mathscr H$, $\Gamma_1:{\mathrm {Dom}}\,L_0^*\to \mathscr K:={\mathrm {Ker}}\,L_0^*$ is one of the boundary operators from the Green formula $({L_0^*} u,v)-(u,{L_0^*}v)=(\Gamma_1u,\Gamma_2v)-(\Gamma_2u,\Gamma_1v)$, $f=f(t)$ is a $\mathscr K$-valued function of time (boundary control), $u=u^f(t)$ is the solution (trajectory), which is an $\mathscr H$-valued function of time. Compared to previous works on this topic, the novelty lies in the properties of the response operator $R^T: f\mapsto \Gamma_2 u^f(\cdot)$, which acts in $\mathscr F^T:=L_2([0,T];\mathscr K)$ on a relevant ${\mathrm{Dom}}\,R^T$.
Key words and phrases: triangular factorization of operators, nest theory, functional models.
Received: 05.10.2025
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. I. Belishev, S. A. Simonov, “Abstract dynamical system with boundary control. IV”, Mathematical problems in the theory of wave propagation. Part 54, Zap. Nauchn. Sem. POMI, 541, POMI, St. Petersburg, 2025, 16–29
Citation in format AMSBIB
\Bibitem{BelSim25}
\by M.~I.~Belishev, S.~A.~Simonov
\paper Abstract dynamical system with boundary control. IV
\inbook Mathematical problems in the theory of wave propagation. Part~54
\serial Zap. Nauchn. Sem. POMI
\yr 2025
\vol 541
\pages 16--29
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7559}
Linking options:
  • https://www.mathnet.ru/eng/znsl7559
  • https://www.mathnet.ru/eng/znsl/v541/p16
    See also
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025