Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 10, Page 1859 (Mi zvmmf100)  

This article is cited in 8 scientific papers (total in 8 papers)

Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders

V. A. Galaktionov

Department of Mathematical Sciences, University of Bath, Math, BA2 7AY, UK
Full-text PDF (156 kB) Citations (8)
Abstract: The third-order nonlinear dispersion PDE, as the key model,
\begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation}
is studied. Two Riemann's problems for (1) with the initial data $S_{\mp}(x)=\mp\operatorname{sign}{x}$ create shock ($u(x,t)\equiv S_{-}(x)$) and smooth rarefaction (for the data $S_{+}$ ) waves (see [16]). The concept of "$\delta$-entropy" solutions and others are developed for establishing the existence and uniqueness for (1) by using stable smooth $\delta$-deformations of shock-type solutions. These are analogous to entropy theory for scalar conservation laws such as $u_t+uu_x=0$, which were developed by Oleinik and Kruzhkov (in $x\in\mathbb R^N$) in the 1950s–1960s. The Rosenau–Hyman $K(2,2)$ (compacton) equation
$$ u_t=(uu_x)_{xx}+4uu_x, $$
which has a special importance for applications, is studied. Compactons as compactly supported travelling wave solutions are shown to be $\delta$-entropy. Shock and rarefaction waves are discussed for other NDEs such as
$$ u_t=(u^2u_x)_{xx},\quad u_{tt}=(uu_x)_{xx},\quad u_{tt}=uu_x,\quad u_{ttt}=(uu_x)_{xx},\quad u_t=(uu_x)_{xxxxxx},\quad \text{ets.} $$
Key words: Odd-order quasi-linear PDE, shock and rarefaction waves, entropy solutions, self-similar patterns.
Received: 24.04.2008
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 10, Pages 1823–1856
DOI: https://doi.org/10.1134/S0965542508100084
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. A. Galaktionov, “Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders”, Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1859; Comput. Math. Math. Phys., 48:10 (2008), 1823–1856
Citation in format AMSBIB
\Bibitem{Gal08}
\by V.~A.~Galaktionov
\paper Nonlinear dispersion equations: Smooth deformations, compactions, and extensions to higher orders
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 10
\pages 1859
\mathnet{http://mi.mathnet.ru/zvmmf100}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2493771}
\zmath{https://zbmath.org/?q=an:1177.76182}
\elib{https://elibrary.ru/item.asp?id=14862059}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 10
\pages 1823--1856
\crossref{https://doi.org/10.1134/S0965542508100084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262335000008}
\elib{https://elibrary.ru/item.asp?id=11533050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249107908}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf100
  • https://www.mathnet.ru/eng/zvmmf/v48/i10/p1859
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025