Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2014, Volume 54, Number 4, Pages 591–607
DOI: https://doi.org/10.7868/S0044466914040152
(Mi zvmmf10019)
 

This article is cited in 4 scientific papers (total in 4 papers)

Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods

R. Weinera, G. Yu. Kulikovb

a Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, Postfach, D-06099 Halle, Germany
b СЕМАТ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
Full-text PDF (317 kB) Citations (4)
References:
Abstract: Automatic global error control of numerical schemes is examined. A new approach to this problem is presented. Namely, the problem is reformulated so that the global error is controlled by the numerical method itself rather than by the user. This makes it possible to find numerical solutions satisfying various accuracy requirements in a single run, which so far was considered unrealistic. On the other hand, the asymptotic equality of local and global errors, which is the basic condition of the new method for efficiently controlling the global error, leads to the concept of double quasi-consistency. This requirement cannot be satisfied within the classical families of numerical methods. However, the recently proposed peer methods include schemes with this property. There exist computational procedures based on these methods and polynomial interpolation of fairly high degree that find the numerical solution in a single run. If the integration stepsize is sufficiently small, the error of this solution does not exceed the prescribed tolerance. The theoretical conclusions of this paper are supported by the numerical results obtained for test problems with known solutions.
Key words: numerical integration of ordinary differential equations, peer methods, double quasi-consistency, calculation and control of local and global errors.
Received: 08.10.2012
Revised: 06.09.2013
English version:
Computational Mathematics and Mathematical Physics, 2014, Volume 54, Issue 4, Pages 604–619
DOI: https://doi.org/10.1134/S0965542514040149
Bibliographic databases:
Document Type: Article
UDC: 519.622.2
Language: Russian
Citation: R. Weiner, G. Yu. Kulikov, “Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods”, Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014), 591–607; Comput. Math. Math. Phys., 54:4 (2014), 604–619
Citation in format AMSBIB
\Bibitem{WeiKul14}
\by R.~Weiner, G.~Yu.~Kulikov
\paper Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2014
\vol 54
\issue 4
\pages 591--607
\mathnet{http://mi.mathnet.ru/zvmmf10019}
\crossref{https://doi.org/10.7868/S0044466914040152}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3200035}
\elib{https://elibrary.ru/item.asp?id=21378520}
\transl
\jour Comput. Math. Math. Phys.
\yr 2014
\vol 54
\issue 4
\pages 604--619
\crossref{https://doi.org/10.1134/S0965542514040149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335679800005}
\elib{https://elibrary.ru/item.asp?id=24518564}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907421809}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10019
  • https://www.mathnet.ru/eng/zvmmf/v54/i4/p591
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025