Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 1, Pages 89–104
DOI: https://doi.org/10.7868/S0044466915010123
(Mi zvmmf10137)
 

This article is cited in 4 scientific papers (total in 4 papers)

Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time

A. B. Kostin

National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409, Russia
Full-text PDF (749 kB) Citations (4)
References:
Abstract: The inverse problem of finding the coefficient $\rho(x)=\rho_0+r(x)$ multiplying $u_t$ in the heat equation is studied. The unknown function $r(x)\geqslant0$ is sought in the class of bounded functions, and $\rho_0$ is a given positive constant. In addition to the initial and boundary conditions (data of the direct problem), a nonlocal observation condition is specified in the form $\int\limits_0^T u(x,t)d\mu(t)=\chi(x)$ with a given measure $d\mu(t)$ and a function $\chi(x)$. The case of integral observation (i.e., $d\mu(t)=\omega(t)dt$) is considered separately. Sufficient conditions for the existence and uniqueness of a solution to the inverse problem are obtained in the form of easy-to-check inequalities. Examples of inverse problems are given for which the assumptions of the theorems proved in this work are satisfied.
Key words: coefficient inverse problems, inverse problem for the heat equation, nonlocal observation (or overdetermination) condition, sufficient conditions for the existence and uniqueness of a solution.
Received: 04.04.2014
Revised: 14.07.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 1, Pages 85–100
DOI: https://doi.org/10.1134/S0965542515010121
Bibliographic databases:
Document Type: Article
UDC: 519.633.9
Language: Russian
Citation: A. B. Kostin, “Recovery of the coefficient of $u_t$ in the heat equation from a condition of nonlocal observation in time”, Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015), 89–104; Comput. Math. Math. Phys., 55:1 (2015), 85–100
Citation in format AMSBIB
\Bibitem{Kos15}
\by A.~B.~Kostin
\paper Recovery of the coefficient of $u_t$ in the heat equation from a condition of~nonlocal observation in time
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 1
\pages 89--104
\mathnet{http://mi.mathnet.ru/zvmmf10137}
\crossref{https://doi.org/10.7868/S0044466915010123}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3304926}
\elib{https://elibrary.ru/item.asp?id=22908449}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 1
\pages 85--100
\crossref{https://doi.org/10.1134/S0965542515010121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348997900008}
\elib{https://elibrary.ru/item.asp?id=23970392}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922021762}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10137
  • https://www.mathnet.ru/eng/zvmmf/v55/i1/p89
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025