Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 5, Pages 836–845
DOI: https://doi.org/10.7868/S0044466915050063
(Mi zvmmf10207)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximate solution of Wiener–Hopf integral equations and its discrete counterparts

A. G. Barseghyan, N. B. Engibaryan

Institute of Mathematics, Academy of Sciences of Armenia, pr. Marshala Baghramyana 24/5, Yerevan, 0019, Armenia
Full-text PDF (221 kB) Citations (8)
References:
Abstract: A method for averaging the kernel of a numerical-analytical solution of nonsingular Wiener–Hopf (WH) equations is proposed. By applying a discretization technique similar to the strip method, the WH integral equation is reduced to a discrete WH equation. A priori estimates are obtained that ensure the uniform convergence of the method. Two techniques for solving discrete WH equations are developed. The first is based on reducing these equations to finite-diagonal systems with a solution converging in the norm to the solution of the original equation. The second method is based on a modification of the Baxter projection theorem, whereby the strongly converging reduction procedure can be replaced by one converging in the norm.
Key words: nonsingular integral equation, discrete Wiener–Hopf equation, constructive solution, reduction, norm convergence, factorization, projection method.
Received: 26.06.2014
Revised: 06.10.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 5, Pages 834–843
DOI: https://doi.org/10.1134/S0965542515050061
Bibliographic databases:
Document Type: Article
UDC: 519.642
MSC: Primary 65R20; Secondary 45A05, 45N05
Language: Russian
Citation: A. G. Barseghyan, N. B. Engibaryan, “Approximate solution of Wiener–Hopf integral equations and its discrete counterparts”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015), 836–845; Comput. Math. Math. Phys., 55:5 (2015), 834–843
Citation in format AMSBIB
\Bibitem{BarEng15}
\by A.~G.~Barseghyan, N.~B.~Engibaryan
\paper Approximate solution of Wiener--Hopf integral equations and its discrete counterparts
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 5
\pages 836--845
\mathnet{http://mi.mathnet.ru/zvmmf10207}
\crossref{https://doi.org/10.7868/S0044466915050063}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3350413}
\zmath{https://zbmath.org/?q=an:06458255}
\elib{https://elibrary.ru/item.asp?id=23299908}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 5
\pages 834--843
\crossref{https://doi.org/10.1134/S0965542515050061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355213800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930224754}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10207
  • https://www.mathnet.ru/eng/zvmmf/v55/i5/p836
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025