Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2015, Volume 55, Number 12, Pages 1986–1998
DOI: https://doi.org/10.7868/S0044466915120042
(Mi zvmmf10308)
 

This article is cited in 7 scientific papers (total in 7 papers)

New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations

D. A. Budzkoa, A. Corderob, J. R. Torregrosab

a Brest State University, bul. Kosmonavtov 21, Brest, 224016, Belarus
b Instituto de Matemática Multidisciplinar, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, 46022, Spain
References:
Abstract: A new one-parameter family of iterative methods for solving nonlinear equations and systems is constructed. It is proved that their order of convergence is three for both equations and systems. An analysis of the dynamical behavior of the methods shows that they have a larger domain of convergence than previously known iterative schemes of the second to fourth orders. Numerical results suggest that the methods are also preferable in terms of their relative stability and the number of iteration steps. The methods are compared with previously known techniques as applied to a system of two nonlinear equations describing the dynamics of a passively gravitating mass in the Newtonian circular restricted four-body problem formulated on the basis of Lagrange’s triangular solutions to the threebody problem.
Key words: two-step iterative scheme for nonlinear equations, Ermakov–Kalitkin scheme, convergence of the scheme, stability.
Funding agency Grant number
Ministerio de Ciencia e Innovación de España МТМ2011-28636-С02-02
Received: 16.06.2014
English version:
Computational Mathematics and Mathematical Physics, 2015, Volume 55, Issue 12, Pages 1947–1959
DOI: https://doi.org/10.1134/S0965542515120040
Bibliographic databases:
Document Type: Article
UDC: 519.615.5
Language: Russian
Citation: D. A. Budzko, A. Cordero, J. R. Torregrosa, “New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations”, Zh. Vychisl. Mat. Mat. Fiz., 55:12 (2015), 1986–1998; Comput. Math. Math. Phys., 55:12 (2015), 1947–1959
Citation in format AMSBIB
\Bibitem{BudCorTor15}
\by D.~A.~Budzko, A.~Cordero, J.~R.~Torregrosa
\paper New family of iterative methods based on the Ermakov--Kalitkin scheme for solving nonlinear systems of equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2015
\vol 55
\issue 12
\pages 1986--1998
\mathnet{http://mi.mathnet.ru/zvmmf10308}
\crossref{https://doi.org/10.7868/S0044466915120042}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3432184}
\elib{https://elibrary.ru/item.asp?id=24730756}
\transl
\jour Comput. Math. Math. Phys.
\yr 2015
\vol 55
\issue 12
\pages 1947--1959
\crossref{https://doi.org/10.1134/S0965542515120040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366101000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948983651}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10308
  • https://www.mathnet.ru/eng/zvmmf/v55/i12/p1986
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025