Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 1, Pages 71–86
DOI: https://doi.org/10.1134/S0044466919010113
(Mi zvmmf10818)
 

This article is cited in 16 scientific papers (total in 16 papers)

The Green function of the Dirichlet problem for the biharmonic equation in a ball

V. V. Karachik

South Ural State University, Chelyabinsk, 454080 Russia
Full-text PDF Citations (16)
References:
Abstract: An elementary solution of the biharmonic equation is defined. By using the properties of the Gegenbauer polynomials, series expansions of this elementary solution and an associated function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere are obtained. Then the Green function of the Dirichlet problem for the biharmonic equation in a unit ball is constructed in the case when the space dimension n is larger than 2. For $n>4$, a series expansion of the Green function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere is obtained. This expansion is used to calculate the integral, over a unit ball, of a homogeneous harmonic polynomial multiplied by a positive power of the norm of the independent variable with a kernel being the Green function. The Green function is found in the case $n = 2$.
Key words: Green function, biharmonic equation, Dirichlet problem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
This study was supported by the Government of the Russian Federation, resolution no. 211 of March 16, 2013, and agreement no. 02.A03.21.0011.
Received: 25.05.2018
Revised: 23.07.2018
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 1, Pages 66–81
DOI: https://doi.org/10.1134/S0965542519010111
Bibliographic databases:
Document Type: Article
UDC: 517.575
Language: Russian
Citation: V. V. Karachik, “The Green function of the Dirichlet problem for the biharmonic equation in a ball”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 71–86; Comput. Math. Math. Phys., 59:1 (2019), 66–81
Citation in format AMSBIB
\Bibitem{Kar19}
\by V.~V.~Karachik
\paper The Green function of the Dirichlet problem for the biharmonic equation in a ball
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 1
\pages 71--86
\mathnet{http://mi.mathnet.ru/zvmmf10818}
\crossref{https://doi.org/10.1134/S0044466919010113}
\elib{https://elibrary.ru/item.asp?id=36954033}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 1
\pages 66--81
\crossref{https://doi.org/10.1134/S0965542519010111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000468086500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065782983}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10818
  • https://www.mathnet.ru/eng/zvmmf/v59/i1/p71
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025