|
Autowave processes in diffusion neuron systems
S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb a Faculty of Mathematics, Yaroslavl State University, Yaroslavl, 150000 Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
Abstract:
A diffusion neuron model representing a system of $m$, $m\geqslant 2$, identical nonlinear delay differential equations coupled by linear diffusion terms is considered. It is shown that, with a suitable choice of the diffusion coefficient, the system has a set of $m$ stable relaxation cycles.
Key words:
bilocal model, autowave processes, asymptotic behavior, stability, diffusion system.
Received: 25.04.2019 Revised: 25.04.2019 Accepted: 15.05.2019
Citation:
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Autowave processes in diffusion neuron systems”, Zh. Vychisl. Mat. Mat. Fiz., 59:9 (2019), 1495–1515; Comput. Math. Math. Phys., 59:9 (2019), 1434–1453
Linking options:
https://www.mathnet.ru/eng/zvmmf10949 https://www.mathnet.ru/eng/zvmmf/v59/i9/p1495
|
|