Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 2, Pages 234–252
DOI: https://doi.org/10.31857/S0044466920020143
(Mi zvmmf11033)
 

This article is cited in 1 scientific paper (total in 1 paper)

Fast Fourier solvers for the tensor product high-order fem for a Poisson type equation

A. A. Zlotnika, I. A. Zlotnikb

a National Research University Higher School of Economics, Moscow, 109028 Russia
b RDK CJSC, Moscow
Full-text PDF Citations (1)
References:
Abstract: Logarithmically optimal in theory and fast in practice, direct algorithms for implementing a tensor product finite element method (FEM) based on tensor products of 1D high-order FEM spaces on multi-dimensional rectangular parallelepipeds are proposed for solving the $N$-dimensional Poisson-type equation $-\Delta u+\alpha u=f$ ($N \geqslant 2$) with Dirichlet boundary conditions. The algorithms are based on well-known Fourier approaches. The key new points are a detailed description of the eigenpairs of the 1D eigenvalue problems for the high-order FEM, as well as fast direct and inverse eigenvector expansion algorithms that simultaneously employ several versions of the fast Fourier transform. Results of numerical experiments in the 2D and 3D cases are presented. The algorithms can be used in numerous applications, in particular, to implement tensor product high-order finite element methods for various time-dependent partial differential equations, including the multidimensional heat, wave, and Schrödinger ones.
Key words: fast direct algorithm, high-order finite element method, FFT, Poisson equation.
Funding agency Grant number
National Research University Higher School of Economics 19-01-021
Ministry of Science and Higher Education of the Russian Federation 5-100
Russian Foundation for Basic Research 19-01-00262
The publication was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics in 2019–2020 (grant no. 19-01-021) and was supported by the Russian Academic Excellence Project “5-100” and the Russian Foundation for Basic Research, grant no. 19-01-00262.
Received: 22.08.2019
Revised: 22.08.2019
Accepted: 17.10.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 2, Pages 240–257
DOI: https://doi.org/10.1134/S096554252002013X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. A. Zlotnik, I. A. Zlotnik, “Fast Fourier solvers for the tensor product high-order fem for a Poisson type equation”, Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 234–252; Comput. Math. Math. Phys., 60:2 (2020), 240–257
Citation in format AMSBIB
\Bibitem{ZloZlo20}
\by A.~A.~Zlotnik, I.~A.~Zlotnik
\paper Fast Fourier solvers for the tensor product high-order fem for a Poisson type equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 2
\pages 234--252
\mathnet{http://mi.mathnet.ru/zvmmf11033}
\crossref{https://doi.org/10.31857/S0044466920020143}
\elib{https://elibrary.ru/item.asp?id=42339710}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 2
\pages 240--257
\crossref{https://doi.org/10.1134/S096554252002013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526460300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083590857}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11033
  • https://www.mathnet.ru/eng/zvmmf/v60/i2/p234
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025