Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 2, Pages 297–322
DOI: https://doi.org/10.31857/S004446692002012X
(Mi zvmmf11037)
 

This article is cited in 4 scientific papers (total in 4 papers)

Lagrangian description of three-dimensional viscous flows at large Reynolds numbers

A. V. Setukhaab

a Research Computing Center, Lomonosov Moscow State University, Moscow, 119234 Russia
b Central Aerohydrodynamic Institute (TsAGI), National Research Center "Zhukovsky Institute", Zhukovskii, Moscow oblast, 140180 Russia
References:
Abstract: Boundary layer theory is used to show that, at large Reynolds numbers, the three-dimensional Navier–Stokes equations can be rewritten in a form with diffusion velocity that was previously known for the cases of two-dimensional and axisymmetric flows. Relying on this hypothesis, a closed system of equations that is a development of a similar model for the indicated special cases is derived to describe fluid flows in the Lagrangian approach. Simultaneously, a number of mathematical issues are investigated. The existence of an integral representation for the velocity field with integrals with respect to Lagrangian coordinates is proved by analyzing the equations of motion of selected Lagrangian particles and applying the theory of ordinary differential equations with parameters. An equation describing the vorticity flux from the body surface is derived.
Key words: equations of mathematical physics, Navier–Stokes equations, Lagrangian coordinates, vortex methods.
Received: 27.07.2019
Revised: 27.07.2019
Accepted: 17.10.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 2, Pages 302–326
DOI: https://doi.org/10.1134/S0965542520020116
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: A. V. Setukha, “Lagrangian description of three-dimensional viscous flows at large Reynolds numbers”, Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 297–322; Comput. Math. Math. Phys., 60:2 (2020), 302–326
Citation in format AMSBIB
\Bibitem{Set20}
\by A.~V.~Setukha
\paper Lagrangian description of three-dimensional viscous flows at large Reynolds numbers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 2
\pages 297--322
\mathnet{http://mi.mathnet.ru/zvmmf11037}
\crossref{https://doi.org/10.31857/S004446692002012X}
\elib{https://elibrary.ru/item.asp?id=42339715}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 2
\pages 302--326
\crossref{https://doi.org/10.1134/S0965542520020116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526460300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083561067}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11037
  • https://www.mathnet.ru/eng/zvmmf/v60/i2/p297
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:272
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026