Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 3, Pages 379–390
DOI: https://doi.org/10.31857/S0044466920030102
(Mi zvmmf11042)
 

Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor–Stratonovich expansion

D. F. Kuznetsov

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russia
References:
Abstract: A strongly converging method of order 2.5 for Ito stochastic differential equations with multidimensional nonadditive noise based on the unified Taylor–Stratonovich expansion is proposed. The focus is on the approaches and methods of mean square approximation of iterated Stratonovich stochastic integrals of multiplicities 1–5 the numerical simulation of which is the main difficulty in the implementation of the proposed numerical method.
Key words: multiple Fourier–Legendre series, iterated Ito stochastic integral, iterated Stratonovich stochastic integral, Ito stochastic differential equation, Taylor–Stratonovich expansion.
Received: 29.08.2018
Revised: 29.08.2018
Accepted: 18.11.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 3, Pages 379–389
DOI: https://doi.org/10.1134/S0965542520030100
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: D. F. Kuznetsov, “Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor–Stratonovich expansion”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 379–390; Comput. Math. Math. Phys., 60:3 (2020), 379–389
Citation in format AMSBIB
\Bibitem{Kuz20}
\by D.~F.~Kuznetsov
\paper Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor--Stratonovich expansion
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 3
\pages 379--390
\mathnet{http://mi.mathnet.ru/zvmmf11042}
\crossref{https://doi.org/10.31857/S0044466920030102}
\elib{https://elibrary.ru/item.asp?id=42445962}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 3
\pages 379--389
\crossref{https://doi.org/10.1134/S0965542520030100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000532248600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084478633}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11042
  • https://www.mathnet.ru/eng/zvmmf/v60/i3/p379
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025