Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 3, Pages 405–412
DOI: https://doi.org/10.31857/S0044466920030114
(Mi zvmmf11044)
 

This article is cited in 6 scientific papers (total in 6 papers)

Numerical continuation method for nonlinear system of scalar and functional equations

N. B. Melnikova, G. V. Paradezhenkoa, B. I. Reserb

a Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
b Mikheev Institute of Metals Physics UrB RAS, Ekaterinburg, 620108 Russia
Full-text PDF Citations (6)
References:
Abstract: We propose a numerical continuation method for a nonlinear system that consists of scalar and functional equations. At each parameter step, we solve the system by a modified Gauss–Seidel method. An advantage of this method is that the system is divided into two parts and each part is solved by a suitable numerical method with a desired precision. We solve the functional equations self-consistently at each step of the iteration process for the system of scalar equations. We apply the proposed method for calculating temperature dependence of magnetic characteristics of metals in the dynamic spin-fluctuation theory.
Key words: numerical continuation, nonlinear systems, Gauss–Seidel method, temperature dependence, magnetic characteristics, spin fluctuations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation AAAA-A18-118020190098-5
18-2-2-11
This research was performed within the state assignment of the Ministry of Science and Education of Russia (Theme “Electron” no. AAAA-A18-118020190098-5) and was supported in part by a program of the Ural Branch of Russian Academy of Sciences (project no. 18-2-2-11).
Received: 01.07.2019
Revised: 02.09.2019
Accepted: 18.11.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 3, Pages 404–410
DOI: https://doi.org/10.1134/S0965542520030112
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: N. B. Melnikov, G. V. Paradezhenko, B. I. Reser, “Numerical continuation method for nonlinear system of scalar and functional equations”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 405–412; Comput. Math. Math. Phys., 60:3 (2020), 404–410
Citation in format AMSBIB
\Bibitem{MelParRes20}
\by N.~B.~Melnikov, G.~V.~Paradezhenko, B.~I.~Reser
\paper Numerical continuation method for nonlinear system of scalar and functional equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 3
\pages 405--412
\mathnet{http://mi.mathnet.ru/zvmmf11044}
\crossref{https://doi.org/10.31857/S0044466920030114}
\elib{https://elibrary.ru/item.asp?id=42445964}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 3
\pages 404--410
\crossref{https://doi.org/10.1134/S0965542520030112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000532248600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084442523}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11044
  • https://www.mathnet.ru/eng/zvmmf/v60/i3/p405
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025