Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2020, Volume 60, Number 3, Pages 413–428
DOI: https://doi.org/10.31857/S0044466920030059
(Mi zvmmf11045)
 

Generalized spline interpolation of functions with large gradients in boundary layers

I. A. Blatova, A. I. Zadorinb, E. V. Kitaevac

a Volga State University of Telecommunications and Informatics, Samara, 443010 Russia
b Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
c Samara National Research University, Samara, 443086 Russia
References:
Abstract: The spline interpolation of functions of one variable with large gradients in boundary layers is studied. It is well known that applying polynomial splines to interpolate functions of this kind leads to significant errors when the small parameter is comparable with the grid step size. A generalized spline that is an analogue of a cubic spline is constructed. The spline is exact on the component responsible for large gradients of the function in the boundary layer. The boundary-layer component is considered as a function of a general form; in particular, the case of an exponential boundary layer is treated. The existence, uniqueness, and accuracy of the constructed spline are analyzed.
Key words: function of one variable, boundary layer, small parameter, generalized spline, error estimate.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0314-2019-0009
This study was supported by the Fundamental Research Program no. 1.1.3 of the Siberian Branch of the Russian Academy of Sciences, project no. 0314-2019-0009.
Received: 14.03.2019
Revised: 02.09.2019
Accepted: 18.11.2019
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 60, Issue 3, Pages 411–426
DOI: https://doi.org/10.1134/S0965542520030057
Bibliographic databases:
Document Type: Article
UDC: 519.652
Language: Russian
Citation: I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Generalized spline interpolation of functions with large gradients in boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 413–428; Comput. Math. Math. Phys., 60:3 (2020), 411–426
Citation in format AMSBIB
\Bibitem{BlaZadKit20}
\by I.~A.~Blatov, A.~I.~Zadorin, E.~V.~Kitaeva
\paper Generalized spline interpolation of functions with large gradients in boundary layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2020
\vol 60
\issue 3
\pages 413--428
\mathnet{http://mi.mathnet.ru/zvmmf11045}
\crossref{https://doi.org/10.31857/S0044466920030059}
\elib{https://elibrary.ru/item.asp?id=42445965}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 60
\issue 3
\pages 411--426
\crossref{https://doi.org/10.1134/S0965542520030057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000532248600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084471545}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11045
  • https://www.mathnet.ru/eng/zvmmf/v60/i3/p413
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025