Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 1, Pages 95–107
DOI: https://doi.org/10.31857/S0044466920120157
(Mi zvmmf11186)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical physics

Monotone schemes for convection–diffusion problems with convective transport in different forms

P. N. Vabishchevichab

a Nuclear Safety Institute, Russian Academy of Sciences, Moscow
b North-Eastern Federal University named after M. K. Ammosov
Full-text PDF Citations (4)
References:
Abstract: Convective transport in convection–diffusion problems can be formulated differently. Convective terms are commonly written in nondivergent or divergent form. For problems of this type, monotone and stable schemes in Banach spaces are constructed in uniform and integral norms, respectively. Monotonicity is related to row or column diagonal dominance. When convective terms are written in symmetric form (the half-sum of the nondivergent and divergent forms), the stability is established in Hilbert spaces of grid functions. Diagonal dominance conditions are given that ensure the monotonicity of two-level schemes for time-dependent convection–diffusion equations and the stability in corresponding spaces.
Key words: convection–diffusion problems, two-level difference schemes, logarithmic norm, monotone schemes.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0013
This study was supported by the Government of the Russian Federation, agreement no. 14.Y26.31.0013.
Received: 10.03.2020
Revised: 18.06.2020
Accepted: 18.09.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 1, Pages 90–102
DOI: https://doi.org/10.1134/S0965542520120155
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “Monotone schemes for convection–diffusion problems with convective transport in different forms”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021), 95–107; Comput. Math. Math. Phys., 61:1 (2021), 90–102
Citation in format AMSBIB
\Bibitem{Vab21}
\by P.~N.~Vabishchevich
\paper Monotone schemes for convection–diffusion problems with convective transport in different forms
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 1
\pages 95--107
\mathnet{http://mi.mathnet.ru/zvmmf11186}
\crossref{https://doi.org/10.31857/S0044466920120157}
\elib{https://elibrary.ru/item.asp?id=44428908}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 1
\pages 90--102
\crossref{https://doi.org/10.1134/S0965542520120155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000624061700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101792625}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11186
  • https://www.mathnet.ru/eng/zvmmf/v61/i1/p95
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025