Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 4, Pages 625–643
DOI: https://doi.org/10.31857/S0044466921040025
(Mi zvmmf11226)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical physics

Bicompact schemes for the multidimensional convection–diffusion equation

M. D. Bragin, B. V. Rogov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Full-text PDF Citations (5)
References:
Abstract: Bicompact schemes are generalized for the first time to the linear multidimensional convection–diffusion equation. Schemes are constructed using the method of lines, the finite-volume method, and bi- and tricubic Hermite interpolation of the sought function in a cell. Time stepping is based on diagonally implicit Runge–Kutta methods. The proposed bicompact schemes are unconditionally stable, conservative, and fourth-order accurate in space for sufficiently smooth solutions. The constructed schemes are implemented by applying an efficient iterative method based on approximate factorization of their multidimensional equations. Every iteration of the method is reduced to a set of independent one-dimensional scalar two-point Gaussian eliminations. Several stationary and nonstationary exact solutions are used to demonstrate the high-order convergence of the developed schemes and the fast convergence of their iterative implementation. Advantages of bicompact schemes as compared with Galerkin-type finite-element schemes are discussed.
Key words: convection–diffusion equation, high-order accurate schemes, implicit schemes, compact schemes, bicompact schemes.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1623
This work was supported by Moscow Center for Fundamental and Applied Mathematics, Àgreement with the Ministry of Science and Higher Education of the Russian Federation, no. 075-15-2019-1623.
Received: 01.07.2020
Revised: 01.07.2020
Accepted: 16.12.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 4, Pages 607–624
DOI: https://doi.org/10.1134/S0965542521040023
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. D. Bragin, B. V. Rogov, “Bicompact schemes for the multidimensional convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021), 625–643; Comput. Math. Math. Phys., 61:4 (2021), 607–624
Citation in format AMSBIB
\Bibitem{BraRog21}
\by M.~D.~Bragin, B.~V.~Rogov
\paper Bicompact schemes for the multidimensional convection–diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 4
\pages 625--643
\mathnet{http://mi.mathnet.ru/zvmmf11226}
\crossref{https://doi.org/10.31857/S0044466921040025}
\elib{https://elibrary.ru/item.asp?id=45545420}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 4
\pages 607--624
\crossref{https://doi.org/10.1134/S0965542521040023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000656207700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107055740}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11226
  • https://www.mathnet.ru/eng/zvmmf/v61/i4/p625
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025