Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 845–864
DOI: https://doi.org/10.31857/S004446692105015X
(Mi zvmmf11242)
 

General numerical methods

Structuring data with block term decomposition: decomposition of joint tensors and variational block term decomposition as a parametrized mixture distribution model

I. V. Oseledetsab, P. V. Kharyukabc

a Skolkovo Institute of Science and Technology (Skoltech), 121205, Moscow, Russia
b Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
c Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Moscow, Russia
Abstract: The idea of using tensor decompositions as a parametric model for group data analysis is developed. Two models (deterministic and probabilistic) based on block term decomposition are presented using various formats of terms. The relationship between block term decomposition and mixtures of continuous latent probabilistic models is established; specifically, a mixture distribution model with a structured representation is constructed relying on block term decomposition. The models are tested as applied to the problem of clustering a set of color images and brain electrical activity data. The results show that the proposed approaches are capable of extracting a relevant individual component of the data.
Key words: group data analysis, block term decomposition, machine learning, component analysis, mixture distribution model.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00494-mol_a
This work was supported by the Russian Foundation for Basic Research, project no. 16-31-00494-mol_a.
Received: 24.12.2020
Revised: 24.12.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 816–835
DOI: https://doi.org/10.1134/S0965542521050146
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: I. V. Oseledets, P. V. Kharyuk, “Structuring data with block term decomposition: decomposition of joint tensors and variational block term decomposition as a parametrized mixture distribution model”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 845–864; Comput. Math. Math. Phys., 61:5 (2021), 816–835
Citation in format AMSBIB
\Bibitem{OseKha21}
\by I.~V.~Oseledets, P.~V.~Kharyuk
\paper Structuring data with block term decomposition: decomposition of joint tensors and variational block term decomposition as a parametrized mixture distribution model
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 845--864
\mathnet{http://mi.mathnet.ru/zvmmf11242}
\crossref{https://doi.org/10.31857/S004446692105015X}
\elib{https://elibrary.ru/item.asp?id=45633465}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 816--835
\crossref{https://doi.org/10.1134/S0965542521050146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109087097}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11242
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p845
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025