Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 2, Pages 217–231
DOI: https://doi.org/10.31857/S0044466922020077
(Mi zvmmf11356)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal control

Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments

A. R. Danilin

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia
Full-text PDF Citations (1)
Abstract: An optimal boundary control problem for solutions of an elliptic equation in a bounded domain with a smooth boundary is considered. The coefficient multiplying the Laplacian is assumed to be small, and integral constraints are imposed on the control. Its own intensity of control is specified on each of the boundary components. A complete asymptotic expansion in powers of the small parameter is obtained for the solution of the problem.
Key words: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
Received: 24.03.2021
Revised: 24.03.2021
Accepted: 12.10.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 2, Pages 218–231
DOI: https://doi.org/10.1134/S0965542522020063
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 217–231; Comput. Math. Math. Phys., 62:2 (2022), 218–231
Citation in format AMSBIB
\Bibitem{Dan22}
\by A.~R.~Danilin
\paper Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 2
\pages 217--231
\mathnet{http://mi.mathnet.ru/zvmmf11356}
\crossref{https://doi.org/10.31857/S0044466922020077}
\elib{https://elibrary.ru/item.asp?id=47563737}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 2
\pages 218--231
\crossref{https://doi.org/10.1134/S0965542522020063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000767355700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85126001622}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11356
  • https://www.mathnet.ru/eng/zvmmf/v62/i2/p217
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025