Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 4, Page 694
DOI: https://doi.org/10.31857/S0044466923040063
(Mi zvmmf11544)
 

Mathematical physics

Two-grid finite element galerkin approximation of equations of motion arising in Oldroyd fluids of order one with non-smooth initial data

D. Goswamia, P. D. Dam'aziob, J. Yun Yuanb, B. Bira

a Department of Mathematical Sciences, Tezpur University, Tezpur, Sonitpur, Assam-784028, India
b Departamento de Matemática, Universidade Federal do Paraná, Brazil
Abstract: We carry out a fully discrete two-grid finite element approximation for the equations of motion arising in the flow of $2D$ Oldroyd fluids. The non-linear parabolic integro-differential equation is solved on a coarse grid. And only a linearized equation is solved on a fine grid, where the linearization is done based on a time dependent Stokes type problem using the coarse grid solution. A first order time discretization scheme based on backward Euler method is then applied. The scheme gives optimal convergence rate for the velocity in $\mathbf{H}^1$-norm and for the pressure in $L^2$-norm. These estimates are shown to be uniform in time under the assumption of uniqueness condition. Numerical results are provided in support of our theoretical findings.
Key words: Oldroyd fluids of order one, two-grid, non-smooth initial data, backward Euler method, optimal and uniform error estimates.
Funding agency Grant number
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior INCTMat/CAPES
University Grants Commission F.30-33/2014
Department of Science and Technology, India DST/INSPIRE Fellowship/IF170401
The first author would like to acknowledge INCTMat/CAPES, Brazil for the financial support as well as the support provided by the UGC (University Grant Commission), Government of India, vide UGC-BSR Start-Up Grant (F.30-33/2014). The last author would like to express his gratitude to the Department of Science and Technology (DST), Government of India, for the financial support (DST/INSPIRE Fellowship/IF170401).
Received: 15.03.2022
Revised: 01.08.2022
Accepted: 15.12.2022
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 4, Pages 659–686
DOI: https://doi.org/10.1134/S0965542523040061
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Goswami, P. D. Dam'azio, J. Yun Yuan, B. Bir, “Two-grid finite element galerkin approximation of equations of motion arising in Oldroyd fluids of order one with non-smooth initial data”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 694; Comput. Math. Math. Phys., 63:4 (2023), 659–686
Citation in format AMSBIB
\Bibitem{GosDamYua23}
\by D.~Goswami, P.~D.~Dam'azio, J.~Yun~Yuan, B.~Bir
\paper Two-grid finite element galerkin approximation of equations of motion arising in Oldroyd fluids of order one with non-smooth initial data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 4
\pages 694
\mathnet{http://mi.mathnet.ru/zvmmf11544}
\crossref{https://doi.org/10.31857/S0044466923040063}
\elib{https://elibrary.ru/item.asp?id=50502015}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 4
\pages 659--686
\crossref{https://doi.org/10.1134/S0965542523040061}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11544
  • https://www.mathnet.ru/eng/zvmmf/v63/i4/p694
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:126
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025