Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 6, Page 937
DOI: https://doi.org/10.31857/S004446692306011X
(Mi zvmmf11566)
 

This article is cited in 3 scientific papers (total in 3 papers)

Optimal control

On normality in optimal control problems with state constraints

D. Yu. Karamzina, F. Lobo Pereirab

a Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
b Research Center for Systems and Technologies (SYSTEC), University of Porto, Porto, Portugal
Full-text PDF Citations (3)
Abstract: A general optimal control problem with endpoint, mixed and state constraints is considered. The question of normality of the known necessary optimality conditions is investigated. Normality stands for the positiveness of the Lagrange multiplier $\lambda^0$ corresponding to the cost functional. In order to prove the normality condition, an appropriate derivative operator for the state constraints is constructed, which acts in a specific Hilbert space and has the properties of surjection and continuity.
Key words: optimal control, maximum principle, state constraints, normality.
Funding agency Grant number
Russian Science Foundation 23-21-00161
This work was supported by the Russian Science Foundation, project no. 23-21-00161 carried out in the Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences.
Received: 20.09.2022
Revised: 25.12.2022
Accepted: 02.02.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 6, Pages 973–989
DOI: https://doi.org/10.1134/S0965542523060118
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: English
Citation: D. Yu. Karamzin, F. Lobo Pereira, “On normality in optimal control problems with state constraints”, Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 937; Comput. Math. Math. Phys., 63:6 (2023), 973–989
Citation in format AMSBIB
\Bibitem{KarLob23}
\by D.~Yu.~Karamzin, F.~Lobo Pereira
\paper On normality in optimal control problems with state constraints
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 6
\pages 937
\mathnet{http://mi.mathnet.ru/zvmmf11566}
\crossref{https://doi.org/10.31857/S004446692306011X}
\elib{https://elibrary.ru/item.asp?id=53836690}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 6
\pages 973--989
\crossref{https://doi.org/10.1134/S0965542523060118}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11566
  • https://www.mathnet.ru/eng/zvmmf/v63/i6/p937
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025