Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 12, Page 2156
DOI: https://doi.org/10.31857/S0044466923120189
(Mi zvmmf11679)
 

Optimal control

Density function-based trust region algorithm for approximating Pareto front of black-box multiobjective optimization problems

K. H. Ju, Y. B. O, K. Rim

Department of Mathematics, Kim Il Sung University CITY, Democratic People’s Republic of Korea
Abstract: In this paper, we consider a black-box multiobjective optimization problem, whose objective functions are computationally expensive. We propose a density function-based trust region algorithm for approximating the Pareto front of this problem. At every iteration, we determine a trust region and then in this trust region, select several sample points, at which are evaluated objective function values. In order to obtain non-dominated solutions in the trust region, we convert given objective functions into one function: scalarization. Then, we construct quadratic models of this function and the objective functions. In current trust region, we find optimal solutions of all single-objective optimization problems with these models as objectives. After that, we remove dominated points from the set of obtained solutions. In order to estimate the distribution of non-dominated solutions, we introduce a density function. By using this density function, we obtain the most “isolated” point among the non-dominated points. Then, we construct a new trust region around this point and repeat the algorithm. We prove convergence of proposed algorithm under the several assumptions. Numerical results show that even in case of tri-objective optimization problems, the points generated by proposed algorithm are uniformly distributed over the Pareto front.
Key words: multiobjective optimization, trust region method, density function, black-box function, the most isolated point.
Received: 28.04.2023
Revised: 28.04.2023
Accepted: 22.08.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 12, Pages 2492–2512
DOI: https://doi.org/10.1134/S096554252312014X
Bibliographic databases:
Document Type: Article
UDC: 619.852
Language: English
Citation: K. H. Ju, Y. B. O, K. Rim, “Density function-based trust region algorithm for approximating Pareto front of black-box multiobjective optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023), 2156; Comput. Math. Math. Phys., 63:12 (2023), 2492–2512
Citation in format AMSBIB
\Bibitem{JuORim23}
\by K.~H.~Ju, Y.~B.~O, K.~Rim
\paper Density function-based trust region algorithm for approximating Pareto front of black-box multiobjective optimization problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 12
\pages 2156
\mathnet{http://mi.mathnet.ru/zvmmf11679}
\crossref{https://doi.org/10.31857/S0044466923120189}
\elib{https://elibrary.ru/item.asp?id=54912969}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 12
\pages 2492--2512
\crossref{https://doi.org/10.1134/S096554252312014X}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11679
  • https://www.mathnet.ru/eng/zvmmf/v63/i12/p2156
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025