Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 1, Pages 162–175
DOI: https://doi.org/10.31857/S0044466924010126
(Mi zvmmf11696)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical physics

Numerical analysis of the blow-up of one-dimensional polymer fluid flow with a front

L. S. Bryndinab, B. V. Semisalovac, V. A. Belyaevab, V. P. Shapeevab

a Novosibirsk State University, 630090, Novosibirsk, Russia
b Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Full-text PDF Citations (2)
Abstract: One-dimensional flows of an incompressible viscoelastic polymer fluid that are qualitatively similar to the solutions of Burgers’ equation are described on the basis of mesoscopic approach for the first time. The corresponding initial boundary-value problem is posed for the system of quasilinear differential equations. The numerical algorithm for solving it is designed and verified. The algorithm uses the explicit fifth-order scheme to approximate unknown functions with respect to time variable and the rational barycentric interpolations with respect to space variable. A method for localization of singular points of the solution in the complex plain and for adaptation of the spatial grid to them is implemented using the Chebyshev–Padé approximations. Two regimes of evolution of the solution to the problem are discovered and characterized while using the algorithm: regime 1–a smooth solution exists in a sufficiently large time interval (the singular point moves parallel to the real axis in the complex plane); regime 2–the smooth solution blows up at the beginning of evolution (the singular point reaches the segment of the real axis where the problem is posed). We study the influence of the rheological parameters of fluid on the realizability of these regimes and on the length of time interval where the smooth solution exists. The obtained results are important for the analysis of laminar-turbulent transitions in viscoelastic polymer continua.
Key words: polymer fluid, rheology, mesoscopic model, one-dimensional flow, Burgers equation, rational approximation, Chebyshev–Padé approximation, trajectory of a singular point in the complex plane.
Funding agency Grant number
Russian Science Foundation 23-21-00499
This work was supported by the Russian Science Foundation, agreement no. 23-21-00499.
Received: 21.03.2023
Accepted: 16.09.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 1, Pages 151–165
DOI: https://doi.org/10.1134/S0965542524010068
Bibliographic databases:
Document Type: Article
UDC: 532.135:519.63
Language: Russian
Citation: L. S. Bryndin, B. V. Semisalov, V. A. Belyaev, V. P. Shapeev, “Numerical analysis of the blow-up of one-dimensional polymer fluid flow with a front”, Zh. Vychisl. Mat. Mat. Fiz., 64:1 (2024), 162–175; Comput. Math. Math. Phys., 64:1 (2024), 151–165
Citation in format AMSBIB
\Bibitem{BrySemBel24}
\by L.~S.~Bryndin, B.~V.~Semisalov, V.~A.~Belyaev, V.~P.~Shapeev
\paper Numerical analysis of the blow-up of one-dimensional polymer fluid flow with a front
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 1
\pages 162--175
\mathnet{http://mi.mathnet.ru/zvmmf11696}
\crossref{https://doi.org/10.31857/S0044466924010126}
\elib{https://elibrary.ru/item.asp?id=68534083}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 1
\pages 151--165
\crossref{https://doi.org/10.1134/S0965542524010068}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11696
  • https://www.mathnet.ru/eng/zvmmf/v64/i1/p162
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025