|
General numerical methods
Synthesis of an optimal stable affine system
L. T. Ashchepkov Eastern Federal University, 690922, Vladivostok, Russia
Abstract:
A method for constructing a feedback that ensures the attraction of trajectories of an affine system to an equilibrium state and to a given manifold is proposed. The feedback is found in an analytical form as a solution to an auxiliary optimal control problem. Sufficient conditions for the existence of the optimal control are given. Application of the proposed method to some classes of linear and nonlinear systems is discussed.
Key words:
attraction of trajectories, stability, sufficient optimality conditions, system design, existence of optimal control.
Received: 22.08.2023 Revised: 08.09.2023 Accepted: 20.10.2023
Citation:
L. T. Ashchepkov, “Synthesis of an optimal stable affine system”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 225–231; Comput. Math. Math. Phys., 64:2 (2024), 211–216
Linking options:
https://www.mathnet.ru/eng/zvmmf11701 https://www.mathnet.ru/eng/zvmmf/v64/i2/p225
|
|