Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 2, Pages 253–262
DOI: https://doi.org/10.31857/S0044466924020064
(Mi zvmmf11703)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Explicit numerically implementable formulas for Poincaré–Steklov operators

A. S. Demidova, A. S. Samokhinb

a Lomonosov Moscow State University, 119991, Moscow, Russia
b Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia
Full-text PDF Citations (1)
Abstract: The paper presents explicit numerically implementable formulas for the Poincaré–Steklov operators, such as the Dirichlet–Neumann, Dirichlet–Robin, Robin1–Robin2, and Grinberg–Mayergoiz operators, related to the two-dimensional Laplace equation. These formulas are based on the lemma about a univalent isometric mapping of a closed analytic curve onto a circle. Numerical results for domains with very complex geometries were obtained for several test harmonic functions for the Dirichlet–Neumann and Dirichlet–Robin operators.
Key words: Poincaré–Steklov operators, univalent isometric mapping of an analytic curve, explicit numerically implementable formulas.
Received: 17.04.2023
Revised: 09.09.2023
Accepted: 20.10.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 2, Pages 237–247
DOI: https://doi.org/10.1134/S0965542524020040
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. S. Demidov, A. S. Samokhin, “Explicit numerically implementable formulas for Poincaré–Steklov operators”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 253–262; Comput. Math. Math. Phys., 64:2 (2024), 237–247
Citation in format AMSBIB
\Bibitem{DemSam24}
\by A.~S.~Demidov, A.~S.~Samokhin
\paper Explicit numerically implementable formulas for Poincar\'e--Steklov operators
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 2
\pages 253--262
\mathnet{http://mi.mathnet.ru/zvmmf11703}
\crossref{https://doi.org/10.31857/S0044466924020064}
\elib{https://elibrary.ru/item.asp?id=71544520}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 2
\pages 237--247
\crossref{https://doi.org/10.1134/S0965542524020040}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11703
  • https://www.mathnet.ru/eng/zvmmf/v64/i2/p253
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025