|
This article is cited in 1 scientific paper (total in 1 paper)
Partial Differential Equations
Explicit numerically implementable formulas for Poincaré–Steklov operators
A. S. Demidova, A. S. Samokhinb a Lomonosov Moscow State University, 119991, Moscow, Russia
b Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia
Abstract:
The paper presents explicit numerically implementable formulas for the Poincaré–Steklov operators, such as the Dirichlet–Neumann, Dirichlet–Robin, Robin1–Robin2, and Grinberg–Mayergoiz operators, related to the two-dimensional Laplace equation. These formulas are based on the lemma about a univalent isometric mapping of a closed analytic curve onto a circle. Numerical results for domains with very complex geometries were obtained for several test harmonic functions for the Dirichlet–Neumann and Dirichlet–Robin operators.
Key words:
Poincaré–Steklov operators, univalent isometric mapping of an analytic curve, explicit numerically implementable formulas.
Received: 17.04.2023 Revised: 09.09.2023 Accepted: 20.10.2023
Citation:
A. S. Demidov, A. S. Samokhin, “Explicit numerically implementable formulas for Poincaré–Steklov operators”, Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 253–262; Comput. Math. Math. Phys., 64:2 (2024), 237–247
Linking options:
https://www.mathnet.ru/eng/zvmmf11703 https://www.mathnet.ru/eng/zvmmf/v64/i2/p253
|
|