Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 3, Pages 486–498
DOI: https://doi.org/10.31857/S0044466924030091
(Mi zvmmf11720)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Algorithms for solving the inverse scattering problem for the Manakov model

O. V. Belai, L. L. Frumin, A. E. Chernyavsky

Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Full-text PDF Citations (1)
Abstract: The paper considers algorithms for solving inverse scattering problems based on the discretization of the Gelfand–Levitan–Marchenko integral equations, associated with the system of nonlinear Schrödinger equations of the Manakov model. The numerical algorithm of the first order approximation for solving the scattering problem is reduced to the inversion of a series of nested block Toeplitz matrices using the Levinson-type bordering method. Increasing the approximation accuracy violates the Toeplitz structure of block matrices. Two algorithms are described that solve this problem for second order accuracy. One algorithm uses a block version of the Levinson bordering algorithm, which recovers the Toeplitz structure of the matrix by moving some terms of the systems of equations to the right-hand side. Another algorithm is based on the Toeplitz decomposition of an almost block-Toeplitz matrix and the Tyrtyshnikov bordering algorithm. The speed and accuracy of calculations using the presented algorithms are compared on an exact solution (the Manakov vector soliton).
Key words: Manakov model, inverse scattering problem, soliton, algorithm, Toeplitz matrix.
Funding agency Grant number
Russian Science Foundation 22-22-00653
This work was supported by the Russian Science Foundation, grant no. 22-22-00653.
Received: 09.07.2023
Revised: 07.11.2023
Accepted: 20.11.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 3, Pages 453–464
DOI: https://doi.org/10.1134/S0965542524030059
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: O. V. Belai, L. L. Frumin, A. E. Chernyavsky, “Algorithms for solving the inverse scattering problem for the Manakov model”, Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 486–498; Comput. Math. Math. Phys., 64:3 (2024), 453–464
Citation in format AMSBIB
\Bibitem{BelFruChe24}
\by O.~V.~Belai, L.~L.~Frumin, A.~E.~Chernyavsky
\paper Algorithms for solving the inverse scattering problem for the Manakov model
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 3
\pages 486--498
\mathnet{http://mi.mathnet.ru/zvmmf11720}
\crossref{https://doi.org/10.31857/S0044466924030091}
\elib{https://elibrary.ru/item.asp?id=73160217}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 3
\pages 453--464
\crossref{https://doi.org/10.1134/S0965542524030059}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11720
  • https://www.mathnet.ru/eng/zvmmf/v64/i3/p486
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025