Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 3, Pages 547–562
DOI: https://doi.org/10.31857/S0044466924030142
(Mi zvmmf11725)
 

Computer science

Target-point interpolation of a program control in the approach problem

A. V. Alekseeva, A. A. Ershovbc

a Experimental Machine-Design Bureau "Novator", 620091, Yekaterinburg, Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
c Ural Federal University, 620002, Yekaterinburg, Russia
Abstract: For a nonlinear controlled system, a fixed-time approach problem is considered in which the target point location becomes known only at the start of motion. According to the proposed solution method, node resolving program controls corresponding to a finite collection of target points from the set of their admissible locations are computed in advance and a refined control for the target point given at the start of motion is determined via linear interpolation of the node controls. The procedure for designing such a resolving control is formulated in the form of two algorithms, one of which is run before the start of the motion, and the other is executed in real time while the system is moving. The error in the transfer of the system’s state to the target point by applying these algorithms is estimated. As an example, we consider the approach problem for a modified Dubins car model and a target point about which only a compact set of its admissible locations is known before the start of motion.
Key words: controlled system, approach problem, linear interpolation, program control, uncertain target point.
Received: 01.10.2023
Revised: 10.11.2023
Accepted: 17.11.2023
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 3, Pages 585–598
DOI: https://doi.org/10.1134/S0965542524030035
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: A. V. Alekseev, A. A. Ershov, “Target-point interpolation of a program control in the approach problem”, Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 547–562; Comput. Math. Math. Phys., 64:3 (2024), 585–598
Citation in format AMSBIB
\Bibitem{AleErs24}
\by A.~V.~Alekseev, A.~A.~Ershov
\paper Target-point interpolation of a program control in the approach problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 3
\pages 547--562
\mathnet{http://mi.mathnet.ru/zvmmf11725}
\crossref{https://doi.org/10.31857/S0044466924030142}
\elib{https://elibrary.ru/item.asp?id=73160222}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 3
\pages 585--598
\crossref{https://doi.org/10.1134/S0965542524030035}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11725
  • https://www.mathnet.ru/eng/zvmmf/v64/i3/p547
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025