Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 6, Pages 992–1007
DOI: https://doi.org/10.31857/S0044466924060088
(Mi zvmmf11770)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary differential equations

Analytical-numerical method for solving the spectral problem in a model of geostrophic ocean currents

S. L. Skorokhodova, N. P. Kuzminab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119991, Moscow, Russia
b Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997, Moscow, Russia
Full-text PDF Citations (1)
Abstract: A new efficient analytical-numerical method is developed for solving a problem for the potential vorticity equation in the quasi-geostrophic approximation with allowance for vertical diffusion of mass and momentum. The method is used to analyze small perturbations of ocean currents of finite transverse scale with a general parabolic vertical profile of velocity. For the arising spectral non-self-adjoint problem, asymptotic expansions of the eigenfunctions and eigenvalues are constructed for small wave numbers $k$ and the existence of a countable set of complex eigenvalues with an unboundedly decreasing imaginary part is shown. On the integration interval $z\in[-1,1]$, a system of three neighborhoods is introduced and a solution in each of them is constructed in the form of power series expansions, which are matched smoothly, so that the eigenfunctions and eigenvalues are efficiently calculated with high accuracy. For a varying wave number $k$, the trajectories of complex eigenvalues are computed for various parameters of the problem and the existence of double eigenvalues is shown. The complex picture of instability developing in the simulated flow depending on physical parameters of the problem is briefly described.
Key words: spectral non-self-adjoint problem, asymptotic expansions, high-accuracy numerical method, double eigenvalues.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FMWE-2024-0015
N.P. Kuzmina’s research was supported by the Shirshov Institute of Oceanology of the Russian Academy of Sciences, subject no. FMWE -2024-0015.
Received: 12.01.2024
Accepted: 15.02.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 6, Pages 1240–1253
DOI: https://doi.org/10.1134/S0965542524700477
Bibliographic databases:
Document Type: Article
UDC: 517.63
Language: Russian
Citation: S. L. Skorokhodov, N. P. Kuzmina, “Analytical-numerical method for solving the spectral problem in a model of geostrophic ocean currents”, Zh. Vychisl. Mat. Mat. Fiz., 64:6 (2024), 992–1007; Comput. Math. Math. Phys., 64:6 (2024), 1240–1253
Citation in format AMSBIB
\Bibitem{SkoKuz24}
\by S.~L.~Skorokhodov, N.~P.~Kuzmina
\paper Analytical-numerical method for solving the spectral problem in a model of geostrophic ocean currents
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 6
\pages 992--1007
\mathnet{http://mi.mathnet.ru/zvmmf11770}
\crossref{https://doi.org/10.31857/S0044466924060088}
\elib{https://elibrary.ru/item.asp?id=75171317}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 6
\pages 1240--1253
\crossref{https://doi.org/10.1134/S0965542524700477}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11770
  • https://www.mathnet.ru/eng/zvmmf/v64/i6/p992
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025