Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 8, Pages 1456–1465
DOI: https://doi.org/10.31857/S0044466924080107
(Mi zvmmf11813)
 

Partial Differential Equations

Spherical spline solutions of an inhomogeneous biharmonic equation

V. L. Vaskevichab

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Novosibirsk State University, 630090, Novosibirsk, Russia
Abstract: An inhomogeneous biharmonic equation is considered on a unit sphere of three-dimensional space. The solution of this equation belonging to the spherical Sobolev space is approximated by a sequence of solutions of the same equation, but with special right-hand sides, which are linear combinations of shifts of the Dirac delta function. It is proved that, for given nodes on the sphere that determine shifts, there exist special solutions of the equation: spherical biharmonic splines, and the weights corresponding to each of them are solutions of the accompanying nondegenerate system of linear algebraic equations. A relation is established between the quality of approximation of the solution of the differential problem by spherical biharmonic splines and the problem of the convergence rate of optimal weighted spherical cubature formulas.
Key words: biharmonic equation, spherical Sobolev spaces, extremal functions, splines.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
This work was carried out as part of a state assignment for the Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, project no. FWNF-2022-0008.
Received: 05.03.2024
Revised: 05.03.2024
Accepted: 05.05.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 8, Pages 1765–1774
DOI: https://doi.org/10.1134/S0965542524700817
Bibliographic databases:
Document Type: Article
UDC: 517.518.85
Language: Russian
Citation: V. L. Vaskevich, “Spherical spline solutions of an inhomogeneous biharmonic equation”, Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024), 1456–1465; Comput. Math. Math. Phys., 64:8 (2024), 1765–1774
Citation in format AMSBIB
\Bibitem{Vas24}
\by V.~L.~Vaskevich
\paper Spherical spline solutions of an inhomogeneous biharmonic equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 8
\pages 1456--1465
\mathnet{http://mi.mathnet.ru/zvmmf11813}
\crossref{https://doi.org/10.31857/S0044466924080107}
\elib{https://elibrary.ru/item.asp?id=75224108}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 8
\pages 1765--1774
\crossref{https://doi.org/10.1134/S0965542524700817}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11813
  • https://www.mathnet.ru/eng/zvmmf/v64/i8/p1456
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025