Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 8, Pages 1476–1485
DOI: https://doi.org/10.31857/S0044466924080125
(Mi zvmmf11815)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Structured pseudospectra in problems of spatial stability of boundary layers

K. V. Demyankoab, G. V. Zaskoab, Yu. M. Nechepurenkoab

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Full-text PDF Citations (1)
Abstract: This work is devoted to a numerical analysis of the sensitivity of the spatial stability characteristics of boundary layers to uncertainties of the main flow. It is proposed to use structured pseudospectra for this purpose. It is shown that the obtained estimates are much more accurate than estimates based on an unstructured pseudospectrum. The presentation is based on an example of the flow of a viscous incompressible fluid over a slightly concave surface with flow parameters favorable for the development of the Görtler vortices and Tollmien–Schlichting waves.
Key words: structured pseudospectra, resolvent, spatial stability, boundary layer, Görtler vortices, Tollmien–Schlichting waves.
Funding agency Grant number
Russian Science Foundation 22-11-00025
This work was supported by the Russian Science Foundation, project no. 22-11-00025.
Received: 23.02.2024
Revised: 23.02.2024
Accepted: 02.05.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 8, Pages 1785–1795
DOI: https://doi.org/10.1134/S0965542524700957
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: K. V. Demyanko, G. V. Zasko, Yu. M. Nechepurenko, “Structured pseudospectra in problems of spatial stability of boundary layers”, Zh. Vychisl. Mat. Mat. Fiz., 64:8 (2024), 1476–1485; Comput. Math. Math. Phys., 64:8 (2024), 1785–1795
Citation in format AMSBIB
\Bibitem{DemZasNec24}
\by K.~V.~Demyanko, G.~V.~Zasko, Yu.~M.~Nechepurenko
\paper Structured pseudospectra in problems of spatial stability of boundary layers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 8
\pages 1476--1485
\mathnet{http://mi.mathnet.ru/zvmmf11815}
\crossref{https://doi.org/10.31857/S0044466924080125}
\elib{https://elibrary.ru/item.asp?id=75224110}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 8
\pages 1785--1795
\crossref{https://doi.org/10.1134/S0965542524700957}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11815
  • https://www.mathnet.ru/eng/zvmmf/v64/i8/p1476
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025