Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 10, Pages 1795–1808
DOI: https://doi.org/10.31857/S0044466924100023
(Mi zvmmf11844)
 

This article is cited in 1 scientific paper (total in 1 paper)

General numerical methods

Solving some inverse problems of gravimetry and magnetometry using an algorithm that improves matrix conditioning

A. S. Leonova, D. V. Lukyanenkob, A. G. Yagolab

a Moscow Engineering Physics Institute (National Nuclear Research University), 115409, Moscow, Russia
b Faculty of Physics, Lomonosov Moscow State University, 119992, Moscow, Russia
Citations (1)
DOI: https://doi.org/10.31857/S0044466924100023
Abstract: For inverse problems of gravimetry and magnetometry, a possible problem formulation is considered, which consists in finding hypothetical point sources at a given depth that correspond to potential fields measured on the Earth’s surface. The uniqueness of solutions to these inverse problems is proved. Their discretized variants are solved numerically using a new algorithm based on improving the condition number of the problem’s matrix with the help of the minimal pseudoinverse matrix method (MPMI algorithm). The algorithm is tested on model problems of gravimetry and magnetometry, which are solved separately. A variant of the MPMI algorithm for the joint solution of these inverse problems is also proposed and tested. Finally, the algorithm is used for separate and joint processing of some well-known gravity and magnetic exploration data, namely, for the Kursk Magnetic Anomaly.
Key words: gravity and magnetic exploration, inverse problem, uniqueness of solution, method of minimal pseudo-inverse matrix.
Funding agency Grant number
Russian Science Foundation 23-41-00002
This work was supported by the Russian Science Foundation, project no. 23-41-00002.
Received: 27.03.2024
Revised: 27.03.2024
Accepted: 28.06.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 10, Pages 2178–2193
DOI: https://doi.org/10.1134/S0965542524701197
Bibliographic databases:
Document Type: Article
UDC: 519.612
Language: Russian
Citation: A. S. Leonov, D. V. Lukyanenko, A. G. Yagola, “Solving some inverse problems of gravimetry and magnetometry using an algorithm that improves matrix conditioning”, Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024), 1795–1808; Comput. Math. Math. Phys., 64:10 (2024), 2178–2193
Citation in format AMSBIB
\Bibitem{LeoLukYag24}
\by A.~S.~Leonov, D.~V.~Lukyanenko, A.~G.~Yagola
\paper Solving some inverse problems of gravimetry and magnetometry using an algorithm that improves matrix conditioning
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 10
\pages 1795--1808
\mathnet{http://mi.mathnet.ru/zvmmf11844}
\elib{https://elibrary.ru/item.asp?id=78990804}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 10
\pages 2178--2193
\crossref{https://doi.org/10.1134/S0965542524701197}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11844
  • https://www.mathnet.ru/eng/zvmmf/v64/i10/p1795
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025