Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2025, Volume 65, Number 1, Pages 36–49
DOI: https://doi.org/10.31857/S0044466925010047
(Mi zvmmf11904)
 

Partial Differential Equations

Nonlinear method of corner boundary functions with the influence of an inflection point

I. V. Denisov, A. I. Denisov

Tula State Pedagogical University, 300026, Tula, Russia
DOI: https://doi.org/10.31857/S0044466925010047
Abstract: In a rectangle $\Omega = \{(x, t) | 0 < x < 1, 0 < t < T\}$, we consider an initial-boundary value problem for a singularly perturbed parabolic equation
\begin{gather} \varepsilon^2\left(a^2\frac{\partial^2 u}{\partial x^2}-\frac{\partial u}{\partial t}\right)=F(u,x,t,\varepsilon),\quad (x,t)\in \Omega, \notag\\ u(x,0,\varepsilon)=\varphi(x),\quad 0\le x\le 1, \notag\\ u(0,t,\varepsilon) =\psi_1(t), u(1,t,\varepsilon)=\psi_2(t),\quad 0\le t\le T. \notag \end{gather}

It is assumed that, at the corner points $(k,0)$ of the rectangle $\Omega$, where $k=0$ or $1$, the function $F(u)=F(u,k,0,0)$ has the form $F(u)=u^3-u^3_0$, where $u_0=u_0(k)<0$.
To construct the asymptotics of the solution, we use a nonlinear method of corner boundary functions. Previously, the case was considered when the boundary value $\varphi$ at the corner points is separated from the inflection point $u = 0$ by the condition $u_0(k) < \varphi(k)<\frac{u_0(k)}{2}<0$, in which the role of barrier functions was played by functions of the simplest type, suitable in the entire domain. In this paper, we consider the case of $\frac{u_0(k)}{2}< \varphi(k) < 0$, in which the domain has to be divided into parts in order to construct in each subdomain its individual barrier functions taking into account their continuous matching at the common boundaries of the subdomains and then to smooth out the piecewise continuous lower and upper solutions. As a result, we obtain a complete asymptotic expansion of the solution at $\varepsilon\to0$ and substantiate its uniformity in the closed rectangle.
Key words: boundary layer, asymptotic approximation, singularly perturbed equation.
Received: 10.03.2024
Revised: 10.03.2024
Accepted: 26.09.2024
English version:
Computational Mathematics and Mathematical Physics, 2025, Volume 65, Issue 1, Pages 76–88
DOI: https://doi.org/10.1134/S0965542524701835
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: I. V. Denisov, A. I. Denisov, “Nonlinear method of corner boundary functions with the influence of an inflection point”, Zh. Vychisl. Mat. Mat. Fiz., 65:1 (2025), 36–49; Comput. Math. Math. Phys., 65:1 (2025), 76–88
Citation in format AMSBIB
\Bibitem{DenDen25}
\by I.~V.~Denisov, A.~I.~Denisov
\paper Nonlinear method of corner boundary functions with the influence of an inflection point
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2025
\vol 65
\issue 1
\pages 36--49
\mathnet{http://mi.mathnet.ru/zvmmf11904}
\elib{https://elibrary.ru/item.asp?id=80521991}
\transl
\jour Comput. Math. Math. Phys.
\yr 2025
\vol 65
\issue 1
\pages 76--88
\crossref{https://doi.org/10.1134/S0965542524701835}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11904
  • https://www.mathnet.ru/eng/zvmmf/v65/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025