Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2025, Volume 65, Number 5, Pages 686–696
DOI: https://doi.org/10.31857/S0044466925050077
(Mi zvmmf11975)
 

Partial Differential Equations

Undercompressive discontinuities of a hyperbolic system of conservation law equations: finite-difference schemes

R. R. Polekhinaab, A. P. Chugainovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
DOI: https://doi.org/10.31857/S0044466925050077
Abstract: A class of finite-difference schemes with well-controlled dissipation is used to solve equations describing long longitudinal-torsional waves in elastic rods. The governing system of equations is a hyperbolic system of conservation laws whose solutions may include undercompressive discontinuities (nonclassical discontinuities). It is well known that such solutions depend on the choice of a regularizing dissipative operator distinguishing a unique solution of the problem. In the scheme with well-controlled dissipation, the dissipative operator defined by its first differential approximation coincides up to small higher order terms with the operator used to define the solution in the continual formulation. The class of schemes under discussion has been poorly studied to date. Numerical experiments are presented that demonstrate the efficiency of this approach.
Key words: shock waves, undercompressive discontinuities, dissipation, numerical scheme.
Funding agency Grant number
Russian Science Foundation 19-71-30012
This work was supported by the Russian Science Foundation, project no. 19-71-30012, https://rscf.ru/en/project/19-71-30012/.
Received: 21.01.2025
Accepted: 27.02.2025
English version:
Computational Mathematics and Mathematical Physics, 2025, Volume 65, Issue 5, Pages 1026–1036
DOI: https://doi.org/10.1134/S096554252570037X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: R. R. Polekhina, A. P. Chugainova, “Undercompressive discontinuities of a hyperbolic system of conservation law equations: finite-difference schemes”, Zh. Vychisl. Mat. Mat. Fiz., 65:5 (2025), 686–696; Comput. Math. Math. Phys., 65:5 (2025), 1026–1036
Citation in format AMSBIB
\Bibitem{PolChu25}
\by R.~R.~Polekhina, A.~P.~Chugainova
\paper Undercompressive discontinuities of a hyperbolic system of conservation law equations: finite-difference schemes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2025
\vol 65
\issue 5
\pages 686--696
\mathnet{http://mi.mathnet.ru/zvmmf11975}
\elib{https://elibrary.ru/item.asp?id=82536922}
\transl
\jour Comput. Math. Math. Phys.
\yr 2025
\vol 65
\issue 5
\pages 1026--1036
\crossref{https://doi.org/10.1134/S096554252570037X}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11975
  • https://www.mathnet.ru/eng/zvmmf/v65/i5/p686
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026