Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2025, Volume 65, Number 6, Pages 946–960
DOI: https://doi.org/10.31857/S0044466925060081
(Mi zvmmf11995)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary differential equations

Differential epidemic models and scenarios for restrictive measures

S. I. Kabanikhin, O. I. Krivorotko, A. V. Neverov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Citations (1) English version article
DOI: https://doi.org/10.31857/S0044466925060081
Abstract: We consider algorithms for calculating the spread of epidemics and analyzing the consequences of introducing or removing restrictive measures based on the SIR model and the Hamilton–Jacobi–Bellman equation. After studying the identifiability and sensitivity of the SIR models, the correctness in the neighborhood of the exact solution and the convergence of the numerical algorithms for solving forward and inverse problems, the optimal control problem is formulated. Numerical simulation results show that feedback control can help determine vaccination policies. The use of PINN neural networks reduced the computation time by a factor of 5, which seems important for promptly changing restrictive measures.
Key words: SIR models, epidemiology, inverse problem, optimal control, Hamilton–Jacobi–Bellman equation, optimization, development scenarios.
Funding agency Grant number
Russian Science Foundation 23-71-10068
This work was supported by the Russian Science Foundation, project no. 23-71-10068.
Received: 27.01.2025
Accepted: 27.03.2025
English version:
Computational Mathematics and Mathematical Physics, 2025, Volume 65, Issue 6, Pages 1300–1313
DOI: https://doi.org/10.1134/S0965542525700459
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: S. I. Kabanikhin, O. I. Krivorotko, A. V. Neverov, “Differential epidemic models and scenarios for restrictive measures”, Zh. Vychisl. Mat. Mat. Fiz., 65:6 (2025), 946–960; Comput. Math. Math. Phys., 65:6 (2025), 1300–1313
Citation in format AMSBIB
\Bibitem{KabKriNev25}
\by S.~I.~Kabanikhin, O.~I.~Krivorotko, A.~V.~Neverov
\paper Differential epidemic models and scenarios for restrictive measures
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2025
\vol 65
\issue 6
\pages 946--960
\mathnet{http://mi.mathnet.ru/zvmmf11995}
\elib{https://elibrary.ru/item.asp?id=82577893}
\transl
\jour Comput. Math. Math. Phys.
\yr 2025
\vol 65
\issue 6
\pages 1300--1313
\crossref{https://doi.org/10.1134/S0965542525700459}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11995
  • https://www.mathnet.ru/eng/zvmmf/v65/i6/p946
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026