|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2025, Volume 65, Number 7, Pages 1265–1276 DOI: https://doi.org/10.31857/S0044466925070145
(Mi zvmmf12017)
|
|
|
|
Partial Differential Equations
On variational settings of the inverse coefficient problems in magnetic hydrodynamics
I. È. Stepanovaa, I. I. Kolotovb, A. V. Shchepetilovb, A. G. Yagolab, A. N. Levashovb a Institute of Physics of the Earth, Russian Academy of Scienses
b Lomonosov Moscow State University
DOI:
https://doi.org/10.31857/S0044466925070145
Abstract:
The paper considers the problem of uniqueness of the solution to the inverse problem of determining the viscosity and magnetic viscosity coefficients from a system of partial differential equations describing MHD phenomena. Uniqueness theorems are given in the case of known magnetic field and velocity field of a charged fluid in the zero approximation, as well as in the case of a known total magnetic field.
Key words:
uniqueness, magnetic viscosity, inverse coefficient problem, integral representation.
Received: 26.02.2025 Accepted: 23.04.2025
Citation:
I. È. Stepanova, I. I. Kolotov, A. V. Shchepetilov, A. G. Yagola, A. N. Levashov, “On variational settings of the inverse coefficient problems in magnetic hydrodynamics”, Zh. Vychisl. Mat. Mat. Fiz., 65:7 (2025), 1265–1276; Comput. Math. Math. Phys., 65:7 (2025), 1646–1658
Linking options:
https://www.mathnet.ru/eng/zvmmf12017 https://www.mathnet.ru/eng/zvmmf/v65/i7/p1265
|
| Statistics & downloads: |
| Abstract page: | 54 |
|