Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2025, Volume 65, Number 8, paper published in the English version journal (Mi zvmmf12046)  

Papers published in the English version of the journal

An efficient DE sinc function-based approximation scheme for non-local elliptic boundary value problems

Sharda Kumari, Sudam Bin, Sourav Roy, M. M. Panja

Department of Mathematics, Visva-Bharati (A Central University), 731235, Santiniketan, West Bengal, India
Abstract: The authors used an effective approximation technique to obtain accurate approximate solutions for a class of second-order non-local, non-linear ordinary differential equations with various non-local terms and boundary conditions that often appear in applied sciences. The underlying mathematical ingredients of the proposed scheme is the finite Whittaker Cardinal function approximation of functions in the basis generating Shannon–Kotelnikov multi-resolution analysis of $L^2(\Omega)$ ($\Omega=[a,b]\subset\mathbb{R}$ or $\mathbb{R}^+$). Formulae relating the exponent $n$ in the desired order $(O(10^{-n}))$ of accuracy, the resolution $J$ of the bandwidth of the approximation space, the dependences of the lower and upper limits in the finite sum in the approximation and a formula for a posteriori error in the approximate solution are provided. The efficiency and elegance of the scheme have been examined for various second-order, non-local, non-linear ordinary differential equations of physical interest and found efficient.
Key words: non-standard Sturm–Liouville problem, non-local elliptic boundary value problem, Dirichlet's boundary condition, Neumann's boundary condition, Robin’s boundary condition, Shannon wavelets, Whittaker Cardinal function approximation.
Funding agency Grant number
University Grants Commission 201610060819
4455
Council of Scientific and Industrial Research 35101652
This work is supported by the research grant of UGC (Fellowship no. 201610060819 (SK), Fellowship no. 4455 (SB)) and CSIR (Fellowship no. 35101652(SR)) Government of India.
Received: 28.03.2025
Revised: 28.03.2025
Accepted: 22.05.2025
English version:
Computational Mathematics and Mathematical Physics, 2025, Volume 65, Issue 8, Pages 1996–2024
DOI: https://doi.org/10.1134/S0965542525700940
Document Type: Article
Language: English
Citation: Sharda Kumari, Sudam Bin, Sourav Roy, M. M. Panja, “An efficient DE sinc function-based approximation scheme for non-local elliptic boundary value problems”, Comput. Math. Math. Phys., 65:8 (2025), 1996–2024
Citation in format AMSBIB
\Bibitem{KumBinRoy25}
\by Sharda~Kumari, Sudam~Bin, Sourav~Roy, M.~M.~Panja
\paper An efficient DE sinc function-based approximation scheme for non-local elliptic boundary value problems
\jour Comput. Math. Math. Phys.
\yr 2025
\vol 65
\issue 8
\pages 1996--2024
\mathnet{http://mi.mathnet.ru/zvmmf12046}
\crossref{https://doi.org/10.1134/S0965542525700940}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf12046
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025