Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1998, Volume 38, Number 9, Pages 1525–1533 (Mi zvmmf1822)  

Analysis of the convergence of a class of barrier projection methods for linear programming problems

M. V. Èl'vov

Moscow State University
References:
Received: 06.06.1997
Bibliographic databases:
Document Type: Article
UDC: 519.852.6
MSC: Primary 90C05; Secondary 65K05
Language: Russian
Citation: M. V. Èl'vov, “Analysis of the convergence of a class of barrier projection methods for linear programming problems”, Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1525–1533; Comput. Math. Math. Phys., 38:9 (1998), 1463–1470
Citation in format AMSBIB
\Bibitem{Elv98}
\by M.~V.~\`El'vov
\paper Analysis of the convergence of a class of barrier projection methods for linear programming problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1998
\vol 38
\issue 9
\pages 1525--1533
\mathnet{http://mi.mathnet.ru/zvmmf1822}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1669110}
\zmath{https://zbmath.org/?q=an:0963.90039}
\transl
\jour Comput. Math. Math. Phys.
\yr 1998
\vol 38
\issue 9
\pages 1463--1470
Linking options:
  • https://www.mathnet.ru/eng/zvmmf1822
  • https://www.mathnet.ru/eng/zvmmf/v38/i9/p1525
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025