Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 5, Pages 767–783 (Mi zvmmf287)  

This article is cited in 7 scientific papers (total in 7 papers)

On the total-variation convergence of regularizing algorithms for ill-posed problems

A. S. Leonov

Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia
References:
Abstract: It is well known that ill-posed problems in the space $V[a,b]$ of functions of bounded variation cannot generally be regularized and the approximate solutions do not converge to the exact one with respect to the variation. However, this convergence can be achieved on separable subspaces of $V[a,b]$. It is shown that the Sobolev spaces $W_1^m[a,b]$, $m\in\mathbb N$ can be used as such subspaces. The classes of regularizing functionals are indicated that guarantee that the approximate solutions produced by the Tikhonov variational scheme for ill-posed problems converge with respect to the norm of $W_1^m[a,b]$. In turn, this ensures the convergence of the approximate solutions with respect to the variation and the higher order total variations.
Key words: ill-posed problems, regularizing algorithms, space of functions of bounded variation, Sobolev space.
Received: 09.02.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 5, Pages 732–747
DOI: https://doi.org/10.1134/S0965542507050028
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: A. S. Leonov, “On the total-variation convergence of regularizing algorithms for ill-posed problems”, Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007), 767–783; Comput. Math. Math. Phys., 47:5 (2007), 732–747
Citation in format AMSBIB
\Bibitem{Leo07}
\by A.~S.~Leonov
\paper On the total-variation convergence of regularizing algorithms for ill-posed problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 5
\pages 767--783
\mathnet{http://mi.mathnet.ru/zvmmf287}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2378657}
\elib{https://elibrary.ru/item.asp?id=9535249}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 5
\pages 732--747
\crossref{https://doi.org/10.1134/S0965542507050028}
\elib{https://elibrary.ru/item.asp?id=13543322}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249692374}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf287
  • https://www.mathnet.ru/eng/zvmmf/v47/i5/p767
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025