Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 4, Pages 665–670 (Mi zvmmf305)  

This article is cited in 5 scientific papers (total in 5 papers)

On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped

E. A. Volkov

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Vavilova 42, Moscow, 119991, Russia
Full-text PDF (722 kB) Citations (5)
References:
Abstract: A combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped is proposed. At the grid points that are at the distance equal to the grid size from the boundary, the 6-point averaging operator is used. At the other grid points, the 26-point averaging operator is used. It is assumed that the boundary values have the third derivatives satisfying the Lipschitz condition on the faces; on the edges, they are continuous and their second derivatives satisfy the compatibility condition implied by the Laplace equation. The uniform convergence of the grid solution with the fourth order with respect to the grid size is proved.
Key words: Numerical solution of the Laplace equation, convergence of grid solutions, rectangular parallelepiped domain.
Received: 02.11.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 4, Pages 638–643
DOI: https://doi.org/10.1134/S0965542507040094
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007), 665–670; Comput. Math. Math. Phys., 47:4 (2007), 638–643
Citation in format AMSBIB
\Bibitem{Vol07}
\by E.~A.~Volkov
\paper On a~combined grid method for solving the Dirichlet problem for the Laplace equation in a~rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 4
\pages 665--670
\mathnet{http://mi.mathnet.ru/zvmmf305}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2376630}
\zmath{https://zbmath.org/?q=an:05200950}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 4
\pages 638--643
\crossref{https://doi.org/10.1134/S0965542507040094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248136895}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf305
  • https://www.mathnet.ru/eng/zvmmf/v47/i4/p665
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025