Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 2, Pages 234–244 (Mi zvmmf331)  

This article is cited in 5 scientific papers (total in 5 papers)

Numerical methods based on multipoint Hermite interpolating polynomials for solving the Cauchy problem for stiff systems of ordinary differential equations

A. F. Latypov, Yu. V. Nikulichev

Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Institutskaya ul. 4/1, Novosibirsk, 630090, Russia
References:
Abstract: Families of $A$-, $L$- and $L(\delta)$-stable methods are constructed for solving the Cauchy problem for a system of ordinary differential equations (ODEs). The $L(\delta)$-stability of a method with a parameter $\delta\in(0,1)$ is defined. The methods are based on the representation of the right-hand sides of an ODE system at the step $h$ in terms of two-or three-point Hermite interpolating polynomials. Comparative results are reported for some test problems. The multipoint Hermite interpolating polynomials are used to derive formulas for evaluating definite integrals. Error estimates are given.
Key words: systems of first-order ordinary differential equations, Cauchy problem, stability, Hermite polynomial interpolation, error estimate.
Received: 01.03.2005
Revised: 26.01.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 2, Pages 227–237
DOI: https://doi.org/10.1134/S0965542507020078
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: A. F. Latypov, Yu. V. Nikulichev, “Numerical methods based on multipoint Hermite interpolating polynomials for solving the Cauchy problem for stiff systems of ordinary differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007), 234–244; Comput. Math. Math. Phys., 47:2 (2007), 227–237
Citation in format AMSBIB
\Bibitem{LatNik07}
\by A.~F.~Latypov, Yu.~V.~Nikulichev
\paper Numerical methods based on multipoint Hermite interpolating polynomials for solving the Cauchy problem for stiff systems of ordinary differential equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 2
\pages 234--244
\mathnet{http://mi.mathnet.ru/zvmmf331}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2351814}
\zmath{https://zbmath.org/?q=an:05200977}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 2
\pages 227--237
\crossref{https://doi.org/10.1134/S0965542507020078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947125978}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf331
  • https://www.mathnet.ru/eng/zvmmf/v47/i2/p234
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025