Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 1, Pages 3–10 (Mi zvmmf340)  

This article is cited in 1 scientific paper (total in 1 paper)

Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise

M. Yu. Kokurin

Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001, Russia
References:
Abstract: The class of regularized Gauss–Newton methods for solving inexactly specified irregular nonlinear equations is examined under the condition that additive perturbations of the operator in the problem are close to zero only in the weak topology. By analogy with the well-understood conventional situation where the perturbed and exact operators are close in norm, a stopping criterion is constructed ensuring that the approximate solution is adequate to the errors in the operator.
Key words: nonlinear operator equation, irregular equation, ill-posed problem, weak approximation, stopping criterion, error estimate.
Received: 16.06.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 1, Pages 1–8
DOI: https://doi.org/10.1134/S0965542507010010
Bibliographic databases:
Document Type: Article
UDC: 519.642.8
Language: Russian
Citation: M. Yu. Kokurin, “Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise”, Zh. Vychisl. Mat. Mat. Fiz., 47:1 (2007), 3–10; Comput. Math. Math. Phys., 47:1 (2007), 1–8
Citation in format AMSBIB
\Bibitem{Kok07}
\by M.~Yu.~Kokurin
\paper Stable approximation of solutions to irregular nonlinear operator equations in a~Hilbert space under large noise
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/zvmmf340}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2347921}
\zmath{https://zbmath.org/?q=an:05200955}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1134/S0965542507010010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947529141}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf340
  • https://www.mathnet.ru/eng/zvmmf/v47/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :176
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025