Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 4, Pages 624–646 (Mi zvmmf485)  

This article is cited in 1 scientific paper (total in 1 paper)

Stationary internal layers in a reaction-advection-diffusion integro-differential system

N. N. Nefedova, O. E. Omel'chenkob, L. Reckec

a Faculty of Physics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
b Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkovskaya ul. 3, Kiev, 01601, Ukraine
c Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
References:
Abstract: A class of singularly perturbed nonlinear integro-differential problems with solutions involving internal transition layers (contrast structures) is considered. An asymptotic expansion of these solutions with respect to a small parameter is constructed, and the stability of stationary solutions to the associated integro-parabolic problems is investigated. The asymptotics are substantiated using the asymptotic method of differential inequalities, which is extended to the new class of problems. The method is based on well-known theorems about differential inequalities and on the idea of using formal asymptotics for constructing upper and lower solutions in singularly perturbed problems with internal and boundary layers.
Key words: singularly perturbed integro-parabolic problems, internal layers, contrast structures, differential inequalities.
Received: 31.10.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 4, Pages 594–615
DOI: https://doi.org/10.1134/S0965542506040087
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: N. N. Nefedov, O. E. Omel'chenko, L. Recke, “Stationary internal layers in a reaction-advection-diffusion integro-differential system”, Zh. Vychisl. Mat. Mat. Fiz., 46:4 (2006), 624–646; Comput. Math. Math. Phys., 46:4 (2006), 594–615
Citation in format AMSBIB
\Bibitem{NefOmeRec06}
\by N.~N.~Nefedov, O.~E.~Omel'chenko, L.~Recke
\paper Stationary internal layers in a~reaction-advection-diffusion integro-differential system
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 4
\pages 624--646
\mathnet{http://mi.mathnet.ru/zvmmf485}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2260354}
\zmath{https://zbmath.org/?q=an:05200933}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 4
\pages 594--615
\crossref{https://doi.org/10.1134/S0965542506040087}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746068584}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf485
  • https://www.mathnet.ru/eng/zvmmf/v46/i4/p624
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025