|
|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 7, Pages 1200–1208
(Mi zvmmf4901)
|
|
|
|
This article is cited in 23 scientific papers (total in 23 papers)
A locally one-dimensional scheme for a fractional-order diffusion equation with boundary conditions of the third kind
A. K. Bazzaeva, M. Kh. Shkhanukov-Lafishevb a North Ossetian State University, ul. Vatutina 46, Vladikavkaz, 362040 Russia
b Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nalchik, 360004 Russia
Abstract:
For a fractional diffusion equation with Robin boundary conditions, locally one-dimensional difference schemes are considered and their stability and convergence are proved.
Key words:
fractional derivative, stability and convergence of difference schemes, slow diffusion equation, locally one-dimensional difference scheme.
Received: 16.07.2009
Citation:
A. K. Bazzaev, M. Kh. Shkhanukov-Lafishev, “A locally one-dimensional scheme for a fractional-order diffusion equation with boundary conditions of the third kind”, Zh. Vychisl. Mat. Mat. Fiz., 50:7 (2010), 1200–1208; Comput. Math. Math. Phys., 50:7 (2010), 1141–1149
Linking options:
https://www.mathnet.ru/eng/zvmmf4901 https://www.mathnet.ru/eng/zvmmf/v50/i7/p1200
|
|