Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 2, Pages 344–360 (Mi zvmmf526)  

This article is cited in 4 scientific papers (total in 4 papers)

Homogeneous and rank bases in spaces of metric configurations

A. I. Maĭsuradze

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: Two families of sets of metric configurations are considered. The conditions are established under which sets from these families are bases for a special linear vector space. It is shown that the transition from the representation of a metric configuration in the trivial basis to its representation in any of the considered bases and back can be effectively calculated. It is shown that the nonnegativity of the decomposition of a metric configuration in the considered bases is a sufficient condition for the semi-metric axioms to hold for this configuration, while the nonnegativity of the decomposition in a rank basis is a necessary and sufficient condition for the metric configuration to have a given rank. The transition coefficients and decomposition components are interpreted in the case of homogeneous bases. Sets from the considered families are indicated that characterize largest-volume cones of metric configurations.
Key words: pattern recognition, data mining, distance geometry, preservation of properties, decomposition in basis, rank of configuration.
Received: 19.01.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 2, Pages 330–344
DOI: https://doi.org/10.1134/S096554250602014X
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. I. Maǐsuradze, “Homogeneous and rank bases in spaces of metric configurations”, Zh. Vychisl. Mat. Mat. Fiz., 46:2 (2006), 344–360; Comput. Math. Math. Phys., 46:2 (2006), 330–344
Citation in format AMSBIB
\Bibitem{Mas06}
\by A.~I.~Ma{\v\i}suradze
\paper Homogeneous and rank bases in spaces of metric configurations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 2
\pages 344--360
\mathnet{http://mi.mathnet.ru/zvmmf526}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2239770}
\zmath{https://zbmath.org/?q=an:1185.68603}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 2
\pages 330--344
\crossref{https://doi.org/10.1134/S096554250602014X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746033713}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf526
  • https://www.mathnet.ru/eng/zvmmf/v46/i2/p344
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025