Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 4, Pages 646–661 (Mi zvmmf7)  

This article is cited in 6 scientific papers (total in 6 papers)

Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton–Krylov method

A. G. Makeev, N. L. Semendiayeva

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
References:
Abstract: The matrix-free Newton–Krylov method that uses the GMRES algorithm (an iterative algorithm for solving systems of linear algebraic equations) is used for the parametric continuation of the solitary traveling pulse solution in a three-component reaction-diffusion system. Using the results of integration on a short time interval, we replace the original system of nonlinear algebraic equations by another system that has more convenient (from the viewpoint of the spectral properties of the GMRES algorithm) Jacobi matrix. The proposed parametric continuation proved to be efficient for large-scale problems, and it made it possible to thoroughly examine the dependence of localized solutions on a parameter of the model.
Key words: reaction-diffusion equations, localized structures, parametric continuation of self-similar solutions, Newton–Krylov method, GMRES algorithm, bifurcation analysis.
Received: 18.04.2008
Revised: 02.07.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 4, Pages 623–637
DOI: https://doi.org/10.1134/S0965542509040071
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: A. G. Makeev, N. L. Semendiayeva, “Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton–Krylov method”, Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009), 646–661; Comput. Math. Math. Phys., 49:4 (2009), 623–637
Citation in format AMSBIB
\Bibitem{MakSem09}
\by A.~G.~Makeev, N.~L.~Semendiayeva
\paper Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton--Krylov method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 4
\pages 646--661
\mathnet{http://mi.mathnet.ru/zvmmf7}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2560945}
\zmath{https://zbmath.org/?q=an:05649718}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 4
\pages 623--637
\crossref{https://doi.org/10.1134/S0965542509040071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265647400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65149099973}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf7
  • https://www.mathnet.ru/eng/zvmmf/v49/i4/p646
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025